Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Detecting neuropsychiatric fluctuations in Parkinson's Disease using patients' own words: the potential of large language models

M. Castelli, M. Sousa, I. Vojtech, M. Single, D. Amstutz, ME. Maradan-Gachet, AD. Magalhães, I. Debove, J. Rusz, P. Martinez-Martin, R. Sznitman, P. Krack, T. Nef

. 2025 ; 11 (1) : 79. [pub] 20250418

Status neindexováno Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25014523

Grantová podpora
40B2-0_194794 SNSF Bridge Discovery
40B2-0_194794 SNSF Bridge Discovery
32003BL_197709 SNF Lead Agency

Over the past decade, neuropsychiatric fluctuations in Parkinson's disease (PD) have been increasingly recognized for their impact on patients' quality of life. Speech, a complex function carrying motor, emotional, and cognitive information, offers potential insights into these fluctuations. While previous studies have focused on acoustic analysis to assess motor speech disorders reliably, the potential of linguistic patterns associated with neuropsychiatric fluctuations in PD remains unexplored. This study analyzed the content of spontaneous speech from 33 PD patients in ON and OFF medication states, using machine learning and large language models (LLMs) to predict medication states and a neuropsychiatric state score. The top-performing model, the LLM Gemma-2 (9B), achieved 98% accuracy in differentiating ON and OFF states and its predicted scores were highly correlated with actual scores (Spearman's ρ = 0.81). These methods could provide a more comprehensive assessment of PD treatment effects, allowing remote neuropsychiatric symptom monitoring via mobile devices.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25014523
003      
CZ-PrNML
005      
20250905141446.0
007      
ta
008      
250701s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41531-025-00939-8 $2 doi
035    __
$a (PubMed)40251156
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Castelli, Matilde $u ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland. matilde.castelli@unibe.ch
245    10
$a Detecting neuropsychiatric fluctuations in Parkinson's Disease using patients' own words: the potential of large language models / $c M. Castelli, M. Sousa, I. Vojtech, M. Single, D. Amstutz, ME. Maradan-Gachet, AD. Magalhães, I. Debove, J. Rusz, P. Martinez-Martin, R. Sznitman, P. Krack, T. Nef
520    9_
$a Over the past decade, neuropsychiatric fluctuations in Parkinson's disease (PD) have been increasingly recognized for their impact on patients' quality of life. Speech, a complex function carrying motor, emotional, and cognitive information, offers potential insights into these fluctuations. While previous studies have focused on acoustic analysis to assess motor speech disorders reliably, the potential of linguistic patterns associated with neuropsychiatric fluctuations in PD remains unexplored. This study analyzed the content of spontaneous speech from 33 PD patients in ON and OFF medication states, using machine learning and large language models (LLMs) to predict medication states and a neuropsychiatric state score. The top-performing model, the LLM Gemma-2 (9B), achieved 98% accuracy in differentiating ON and OFF states and its predicted scores were highly correlated with actual scores (Spearman's ρ = 0.81). These methods could provide a more comprehensive assessment of PD treatment effects, allowing remote neuropsychiatric symptom monitoring via mobile devices.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Sousa, Mario $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Vojtech, Illner $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Single, Michael $u ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
700    1_
$a Amstutz, Deborah $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Maradan-Gachet, Marie Elise $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Magalhães, Andreia D $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Debove, Ines $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Rusz, Jan $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Martinez-Martin, Pablo $u Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
700    1_
$a Sznitman, Raphael $u ARTORG Center for Biomedical Engineering Research, AIMI, University of Bern, Bern, Switzerland
700    1_
$a Krack, Paul $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
700    1_
$a Nef, Tobias $u ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland $u Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
773    0_
$w MED00208625 $t NPJ Parkinson's disease $x 2373-8057 $g Roč. 11, č. 1 (2025), s. 79
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40251156 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250701 $b ABA008
991    __
$a 20250905141434 $b ABA008
999    __
$a ok $b bmc $g 2388110 $s 1251643
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2025 $b 11 $c 1 $d 79 $e 20250418 $i 2373-8057 $m NPJ Parkinson's disease $n NPJ Parkinsons Dis $x MED00208625
GRA    __
$a 40B2-0_194794 $p SNSF Bridge Discovery
GRA    __
$a 40B2-0_194794 $p SNSF Bridge Discovery
GRA    __
$a 32003BL_197709 $p SNF Lead Agency
LZP    __
$a Pubmed-20250701

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...