Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Porovnání přesnosti detekce abnormalit na rtg snímcích hrudníku softwarem Carebot AI CXR a radiology
[Comparison of performance between artificial intelligence and radiologists in detecting abnormalities on chest X-rays]

Jakub Dandár, Tomáš Jindra, Daniel Kvak

. 2025 ; 164 (3) : 125-140.

Status minimal Language Czech Country Czech Republic

Digital library NLK
Source
Source

E-resources Online

NLK Medline Complete (EBSCOhost) from 2011-01-01

Umělá inteligence (AI) se stále častěji uplatňuje v radiologii, kde nabízí potenciál zlepšit přesnost a efektivitu diagnostiky, zejména při hodnocení běžných zobrazovacích metod, jako jsou rtg snímky hrudníku. Tato studie analyzuje přesnost komerčního softwaru využívajícího strojové učení, respektive metody umělé inteligence, při detekci abnormalit na rtg snímcích hrudníku ve srovnání s nezávislými hodnoceními 3 juniorních radiologů. Výzkum byl proveden ve spolupráci s Nemocnicí Tábor, která poskytla dataset 207 anonymizovaných rtg snímků, z nichž 196 bylo vyhodnoceno jako relevantní. Senzitivita a specificita AI byla porovnána s lidským hodnocením v 5 kategoriích abnormalit: atelektáza (ATE), konsolidace (CON), zvětšení srdečního stínu (CMG), pleurální výpotek (EFF) a plicní léze (LES). Software Carebot AI CXR dosáhl vysoké senzitivity ve všech hodnocených kategoriích (např. ATE: 0,909; CMG: 0,889; EFF: 0,951), přičemž jeho přesnost byla konzistentní napříč všemi nálezy. Naopak specificita AI byla v některých kategoriích nižší (např. EFF: 0,792; CON 0,895), zatímco u radiologů dosahovala ve většině případů hodnot blížících se 1,000 (např. RAD 1 a RAD 2 EFF: 1,000). AI vykazovala konzistentně vyšší senzitivitu než méně zkušení radiologové (např. RAD 1 ATE: 0,087; CMG: 0,327) a v některých případech i než zkušenější hodnotitelé, avšak za cenu mírného snížení specificity. Studie zahrnuje také kazuistiky, včetně falešně pozitivních a falešně negativních nálezů, které přispívají k hlubšímu pochopení přesnosti AI v klinické praxi. Výsledky naznačují, že AI může efektivně doplňovat práci radiologů, zejména u méně zkušených lékařů, a zlepšit senzitivitu diagnostiky na rtg snímcích hrudníku.

Artificial intelligence (AI) has been increasingly applied in radiology, where it offers the potential to improve the accuracy and efficiency of diagnosis, particularly in the evaluation of conventional imaging modalities such as chest X-rays. This study analyzes the performance of commercial software using machine learning and, respectively, artificial intelligence approaches (Carebot AI CXR; Carebot s.r.o.) in detecting abnormalities in chest radiographs compared with independent evaluations by 3 radiologists of different levels of experience. The study was conducted in collaboration with Hospital Tabor, which provided a dataset of 207 anonymised radiographs, out of which 196 were assessed as relevant. The sensitivity and specificity of AI were compared with human assessment in 5 categories of abnormalities: atelectasis (ATE), consolidation (CON), cardiac shadow enlargement (CMG), pleural effusion (EFF) and pulmonary lesions (LES). Carebot AI CXR software achieved high sensitivity in all evaluated categories (e.g., ATE: 0.909, CMG: 0.889, EFF: 0.951), and its performance was consistent across all findings. In contrast, AI specificity was lower in some categories (e.g., EFF: 0.792, CON: 0.895), while radiologists achieved performance values approaching 1.000 in most cases (e.g., RAD 1 and RAD 2 EFF: 1.000). AI demonstrated consistently higher sensitivity than less experienced radiologists (e.g., RAD 1 ATE: 0.087, CMG: 0.327) and in some cases than more experienced assessors, but at a modest decrease in specificity. The study also includes case reports, including false-positive and false-negative findings, which contribute to a deeper understanding of AI performance in clinical practice. The results suggest that AI can effectively complement the work of radiologists, especially for less experienced doctors, and improve the sensitivity of diagnosis on chest radiographs.

Comparison of performance between artificial intelligence and radiologists in detecting abnormalities on chest X-rays

000      
00000naa a2200000 a 4500
001      
bmc25014824
003      
CZ-PrNML
005      
20250820101932.0
007      
ta
008      
250731s2025 xr ad f 000 0|cze||
009      
AR
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a cze $b eng
044    __
$a xr
100    1_
$a Dandár, Jakub $7 xx0318455 $u Carebot, s. r. o., Praha
245    10
$a Porovnání přesnosti detekce abnormalit na rtg snímcích hrudníku softwarem Carebot AI CXR a radiology / $c Jakub Dandár, Tomáš Jindra, Daniel Kvak
246    31
$a Comparison of performance between artificial intelligence and radiologists in detecting abnormalities on chest X-rays
520    3_
$a Umělá inteligence (AI) se stále častěji uplatňuje v radiologii, kde nabízí potenciál zlepšit přesnost a efektivitu diagnostiky, zejména při hodnocení běžných zobrazovacích metod, jako jsou rtg snímky hrudníku. Tato studie analyzuje přesnost komerčního softwaru využívajícího strojové učení, respektive metody umělé inteligence, při detekci abnormalit na rtg snímcích hrudníku ve srovnání s nezávislými hodnoceními 3 juniorních radiologů. Výzkum byl proveden ve spolupráci s Nemocnicí Tábor, která poskytla dataset 207 anonymizovaných rtg snímků, z nichž 196 bylo vyhodnoceno jako relevantní. Senzitivita a specificita AI byla porovnána s lidským hodnocením v 5 kategoriích abnormalit: atelektáza (ATE), konsolidace (CON), zvětšení srdečního stínu (CMG), pleurální výpotek (EFF) a plicní léze (LES). Software Carebot AI CXR dosáhl vysoké senzitivity ve všech hodnocených kategoriích (např. ATE: 0,909; CMG: 0,889; EFF: 0,951), přičemž jeho přesnost byla konzistentní napříč všemi nálezy. Naopak specificita AI byla v některých kategoriích nižší (např. EFF: 0,792; CON 0,895), zatímco u radiologů dosahovala ve většině případů hodnot blížících se 1,000 (např. RAD 1 a RAD 2 EFF: 1,000). AI vykazovala konzistentně vyšší senzitivitu než méně zkušení radiologové (např. RAD 1 ATE: 0,087; CMG: 0,327) a v některých případech i než zkušenější hodnotitelé, avšak za cenu mírného snížení specificity. Studie zahrnuje také kazuistiky, včetně falešně pozitivních a falešně negativních nálezů, které přispívají k hlubšímu pochopení přesnosti AI v klinické praxi. Výsledky naznačují, že AI může efektivně doplňovat práci radiologů, zejména u méně zkušených lékařů, a zlepšit senzitivitu diagnostiky na rtg snímcích hrudníku.
520    9_
$a Artificial intelligence (AI) has been increasingly applied in radiology, where it offers the potential to improve the accuracy and efficiency of diagnosis, particularly in the evaluation of conventional imaging modalities such as chest X-rays. This study analyzes the performance of commercial software using machine learning and, respectively, artificial intelligence approaches (Carebot AI CXR; Carebot s.r.o.) in detecting abnormalities in chest radiographs compared with independent evaluations by 3 radiologists of different levels of experience. The study was conducted in collaboration with Hospital Tabor, which provided a dataset of 207 anonymised radiographs, out of which 196 were assessed as relevant. The sensitivity and specificity of AI were compared with human assessment in 5 categories of abnormalities: atelectasis (ATE), consolidation (CON), cardiac shadow enlargement (CMG), pleural effusion (EFF) and pulmonary lesions (LES). Carebot AI CXR software achieved high sensitivity in all evaluated categories (e.g., ATE: 0.909, CMG: 0.889, EFF: 0.951), and its performance was consistent across all findings. In contrast, AI specificity was lower in some categories (e.g., EFF: 0.792, CON: 0.895), while radiologists achieved performance values approaching 1.000 in most cases (e.g., RAD 1 and RAD 2 EFF: 1.000). AI demonstrated consistently higher sensitivity than less experienced radiologists (e.g., RAD 1 ATE: 0.087, CMG: 0.327) and in some cases than more experienced assessors, but at a modest decrease in specificity. The study also includes case reports, including false-positive and false-negative findings, which contribute to a deeper understanding of AI performance in clinical practice. The results suggest that AI can effectively complement the work of radiologists, especially for less experienced doctors, and improve the sensitivity of diagnosis on chest radiographs.
655    _2
$a Původní práce
700    1_
$a Jindra, Tomáš $u Nemocnice Tábor, a. s. $7 _AN123043
700    1_
$a Kvak, Daniel $u Masarykova univerzita v Brně $7 xx0267402
773    0_
$w MED00010976 $t Časopis lékařů českých $x 0008-7335 $g Roč. 164, č. 3 (2025), s. 125-140
856    41
$u https://www.prolekare.cz/casopisy/casopis-lekaru-ceskych/2025-3-3/porovnani-presnosti-detekce-abnormalit-na-rtg-snimcich-hrudniku-softwarem-carebot-ai-cxr-a-radiology-140856 $y Meditorial
910    __
$a ABA008 $b B 1 $c 1068 $y - $z 0
990    __
$a 20250703 $b ABA008
991    __
$a 20250820101913 $b ABA008
999    __
$a min $b bmc $g 2378542 $s 1251944
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2025 $b 164 $c 3 $d 125-140 $i 0008-7335 $m Časopis lékařů českých $x MED00010976 $y 140856
LZP    __
$b NLK111 $a Meditorial-20250703

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...