Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review

S. Liu, L. Kandakji, A. Stupnicki, D. Sumodhee, MT. Leucci, S. Hau, S. Balal, A. Okonkwo, I. Moghul, SP. Kanda, BD. Allan, DM. Gore, K. Muthusamy, AJ. Hardcastle, AE. Davidson, P. Liskova, N. Pontikos

. 2025 ; 14 (6) : 12. [pub] 20250602

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/bmc25015386

PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a common, age-related cause of visual impairment. This systematic review synthesizes evidence from the literature on artificial intelligence (AI) models developed for the diagnosis and management of FECD. METHODS: We conducted a systematic literature search in MEDLINE, PubMed, Web of Science, and Scopus from January 1, 2000, to June 31, 2024. Full-text studies utilizing AI for various clinical contexts of FECD management were included. Data extraction covered model development, predicted outcomes, validation, and model performance metrics. We graded the included studies using the Quality Assessment of Diagnostic Accuracies Studies 2 tool. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS: Nineteen studies were analyzed. Primary AI algorithms applied in FECD diagnosis and management included neural network architectures specialized for computer vision, utilized on confocal or specular microscopy images, or anterior segment optical coherence tomography images. AI was employed in diverse clinical contexts, such as assessing corneal endothelium and edema and predicting post-corneal transplantation graft detachment and survival. Despite many studies reporting promising model performance, a notable limitation was that only three studies performed external validation. Bias introduced by patient selection processes and experimental designs was evident in the included studies. CONCLUSIONS: Despite the potential of AI algorithms to enhance FECD diagnosis and prognostication, further work is required to evaluate their real-world applicability and clinical utility. TRANSLATIONAL RELEVANCE: This review offers critical insights for researchers, clinicians, and policymakers, aiding their understanding of existing AI research in FECD management and guiding future health service strategies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25015386
003      
CZ-PrNML
005      
20250731090939.0
007      
ta
008      
250708s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1167/tvst.14.6.12 $2 doi
035    __
$a (PubMed)40478592
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Liu, Siyin $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
245    10
$a Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review / $c S. Liu, L. Kandakji, A. Stupnicki, D. Sumodhee, MT. Leucci, S. Hau, S. Balal, A. Okonkwo, I. Moghul, SP. Kanda, BD. Allan, DM. Gore, K. Muthusamy, AJ. Hardcastle, AE. Davidson, P. Liskova, N. Pontikos
520    9_
$a PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a common, age-related cause of visual impairment. This systematic review synthesizes evidence from the literature on artificial intelligence (AI) models developed for the diagnosis and management of FECD. METHODS: We conducted a systematic literature search in MEDLINE, PubMed, Web of Science, and Scopus from January 1, 2000, to June 31, 2024. Full-text studies utilizing AI for various clinical contexts of FECD management were included. Data extraction covered model development, predicted outcomes, validation, and model performance metrics. We graded the included studies using the Quality Assessment of Diagnostic Accuracies Studies 2 tool. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS: Nineteen studies were analyzed. Primary AI algorithms applied in FECD diagnosis and management included neural network architectures specialized for computer vision, utilized on confocal or specular microscopy images, or anterior segment optical coherence tomography images. AI was employed in diverse clinical contexts, such as assessing corneal endothelium and edema and predicting post-corneal transplantation graft detachment and survival. Despite many studies reporting promising model performance, a notable limitation was that only three studies performed external validation. Bias introduced by patient selection processes and experimental designs was evident in the included studies. CONCLUSIONS: Despite the potential of AI algorithms to enhance FECD diagnosis and prognostication, further work is required to evaluate their real-world applicability and clinical utility. TRANSLATIONAL RELEVANCE: This review offers critical insights for researchers, clinicians, and policymakers, aiding their understanding of existing AI research in FECD management and guiding future health service strategies.
650    _2
$a lidé $7 D006801
650    12
$a Fuchsova endoteliální dystrofie $x diagnóza $x terapie $7 D005642
650    12
$a umělá inteligence $7 D001185
650    _2
$a optická koherentní tomografie $x metody $7 D041623
655    _2
$a časopisecké články $7 D016428
655    _2
$a systematický přehled $7 D000078182
700    1_
$a Kandakji, Lynn $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
700    1_
$a Stupnicki, Aleksander $u University College London Medical School, London, UK
700    1_
$a Sumodhee, Dayyanah $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
700    1_
$a Leucci, Marcello T $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-3998-6415
700    1_
$a Hau, Scott $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-6913-6107
700    1_
$a Balal, Shafi $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-7683-2741
700    1_
$a Okonkwo, Arthur $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
700    1_
$a Moghul, Ismail $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0003-3653-2327
700    1_
$a Kanda, Sandor P $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0009-0006-8694-8653
700    1_
$a Allan, Bruce D $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-8503-4482
700    1_
$a Gore, Dan M $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
700    1_
$a Muthusamy, Kirithika $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-6009-0923
700    1_
$a Hardcastle, Alison J $u University College London Institute of Ophthalmology, London, UK $u https://orcid.org/0000-0002-0038-6770
700    1_
$a Davidson, Alice E $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-1816-6151
700    1_
$a Liskova, Petra $u Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic $u Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $u https://orcid.org/0000-0001-7834-8486
700    1_
$a Pontikos, Nikolas $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0003-1782-4711
773    0_
$w MED00210167 $t Translational vision science & technology $x 2164-2591 $g Roč. 14, č. 6 (2025), s. 12
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40478592 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731090933 $b ABA008
999    __
$a ok $b bmc $g 2366304 $s 1252511
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 14 $c 6 $d 12 $e 20250602 $i 2164-2591 $m Translational vision science & technology $n Transl Vis Sci Technol $x MED00210167
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...