-
Je něco špatně v tomto záznamu ?
Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review
S. Liu, L. Kandakji, A. Stupnicki, D. Sumodhee, MT. Leucci, S. Hau, S. Balal, A. Okonkwo, I. Moghul, SP. Kanda, BD. Allan, DM. Gore, K. Muthusamy, AJ. Hardcastle, AE. Davidson, P. Liskova, N. Pontikos
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, systematický přehled
NLK
Directory of Open Access Journals
od 2016
PubMed Central
od 2012
ROAD: Directory of Open Access Scholarly Resources
od 2012
PubMed
40478592
DOI
10.1167/tvst.14.6.12
Knihovny.cz E-zdroje
- MeSH
- Fuchsova endoteliální dystrofie * diagnóza terapie MeSH
- lidé MeSH
- optická koherentní tomografie metody MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a common, age-related cause of visual impairment. This systematic review synthesizes evidence from the literature on artificial intelligence (AI) models developed for the diagnosis and management of FECD. METHODS: We conducted a systematic literature search in MEDLINE, PubMed, Web of Science, and Scopus from January 1, 2000, to June 31, 2024. Full-text studies utilizing AI for various clinical contexts of FECD management were included. Data extraction covered model development, predicted outcomes, validation, and model performance metrics. We graded the included studies using the Quality Assessment of Diagnostic Accuracies Studies 2 tool. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS: Nineteen studies were analyzed. Primary AI algorithms applied in FECD diagnosis and management included neural network architectures specialized for computer vision, utilized on confocal or specular microscopy images, or anterior segment optical coherence tomography images. AI was employed in diverse clinical contexts, such as assessing corneal endothelium and edema and predicting post-corneal transplantation graft detachment and survival. Despite many studies reporting promising model performance, a notable limitation was that only three studies performed external validation. Bias introduced by patient selection processes and experimental designs was evident in the included studies. CONCLUSIONS: Despite the potential of AI algorithms to enhance FECD diagnosis and prognostication, further work is required to evaluate their real-world applicability and clinical utility. TRANSLATIONAL RELEVANCE: This review offers critical insights for researchers, clinicians, and policymakers, aiding their understanding of existing AI research in FECD management and guiding future health service strategies.
https orcid org 0000 0001 6009 0923
https orcid org 0000 0001 6913 6107
https orcid org 0000 0001 7683 2741
https orcid org 0000 0001 7834 8486
https orcid org 0000 0002 0038 6770
https orcid org 0000 0002 1816 6151
https orcid org 0000 0002 3998 6415
https orcid org 0000 0002 8503 4482
https orcid org 0000 0003 1782 4711
https orcid org 0000 0003 3653 2327
https orcid org 0009 0006 8694 8653
Moorfields Eye Hospital NHS Foundation Trust London UK
University College London Institute of Ophthalmology London UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015386
- 003
- CZ-PrNML
- 005
- 20250731090939.0
- 007
- ta
- 008
- 250708s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1167/tvst.14.6.12 $2 doi
- 035 __
- $a (PubMed)40478592
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Liu, Siyin $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 245 10
- $a Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review / $c S. Liu, L. Kandakji, A. Stupnicki, D. Sumodhee, MT. Leucci, S. Hau, S. Balal, A. Okonkwo, I. Moghul, SP. Kanda, BD. Allan, DM. Gore, K. Muthusamy, AJ. Hardcastle, AE. Davidson, P. Liskova, N. Pontikos
- 520 9_
- $a PURPOSE: Fuchs endothelial corneal dystrophy (FECD) is a common, age-related cause of visual impairment. This systematic review synthesizes evidence from the literature on artificial intelligence (AI) models developed for the diagnosis and management of FECD. METHODS: We conducted a systematic literature search in MEDLINE, PubMed, Web of Science, and Scopus from January 1, 2000, to June 31, 2024. Full-text studies utilizing AI for various clinical contexts of FECD management were included. Data extraction covered model development, predicted outcomes, validation, and model performance metrics. We graded the included studies using the Quality Assessment of Diagnostic Accuracies Studies 2 tool. This review adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations. RESULTS: Nineteen studies were analyzed. Primary AI algorithms applied in FECD diagnosis and management included neural network architectures specialized for computer vision, utilized on confocal or specular microscopy images, or anterior segment optical coherence tomography images. AI was employed in diverse clinical contexts, such as assessing corneal endothelium and edema and predicting post-corneal transplantation graft detachment and survival. Despite many studies reporting promising model performance, a notable limitation was that only three studies performed external validation. Bias introduced by patient selection processes and experimental designs was evident in the included studies. CONCLUSIONS: Despite the potential of AI algorithms to enhance FECD diagnosis and prognostication, further work is required to evaluate their real-world applicability and clinical utility. TRANSLATIONAL RELEVANCE: This review offers critical insights for researchers, clinicians, and policymakers, aiding their understanding of existing AI research in FECD management and guiding future health service strategies.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a Fuchsova endoteliální dystrofie $x diagnóza $x terapie $7 D005642
- 650 12
- $a umělá inteligence $7 D001185
- 650 _2
- $a optická koherentní tomografie $x metody $7 D041623
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a systematický přehled $7 D000078182
- 700 1_
- $a Kandakji, Lynn $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Stupnicki, Aleksander $u University College London Medical School, London, UK
- 700 1_
- $a Sumodhee, Dayyanah $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Leucci, Marcello T $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-3998-6415
- 700 1_
- $a Hau, Scott $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-6913-6107
- 700 1_
- $a Balal, Shafi $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-7683-2741
- 700 1_
- $a Okonkwo, Arthur $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Moghul, Ismail $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0003-3653-2327
- 700 1_
- $a Kanda, Sandor P $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0009-0006-8694-8653
- 700 1_
- $a Allan, Bruce D $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-8503-4482
- 700 1_
- $a Gore, Dan M $u Moorfields Eye Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Muthusamy, Kirithika $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0001-6009-0923
- 700 1_
- $a Hardcastle, Alison J $u University College London Institute of Ophthalmology, London, UK $u https://orcid.org/0000-0002-0038-6770
- 700 1_
- $a Davidson, Alice E $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0002-1816-6151
- 700 1_
- $a Liskova, Petra $u Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic $u Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $u https://orcid.org/0000-0001-7834-8486
- 700 1_
- $a Pontikos, Nikolas $u University College London Institute of Ophthalmology, London, UK $u Moorfields Eye Hospital NHS Foundation Trust, London, UK $u https://orcid.org/0000-0003-1782-4711
- 773 0_
- $w MED00210167 $t Translational vision science & technology $x 2164-2591 $g Roč. 14, č. 6 (2025), s. 12
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40478592 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731090933 $b ABA008
- 999 __
- $a ok $b bmc $g 2366304 $s 1252511
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 14 $c 6 $d 12 $e 20250602 $i 2164-2591 $m Translational vision science & technology $n Transl Vis Sci Technol $x MED00210167
- LZP __
- $a Pubmed-20250708