-
Je něco špatně v tomto záznamu ?
The prognostic reasoning system for chronic kidney disease progression (PROGRES-CKD) may help improve waiting list management for outpatient nephrology services in a second-level public hospital in Italy
P. Fabbrini, F. Pieruzzi, F. Bellocchio, R. Casana Eslava, J. Silvestre Llopis, K. Morillo Navarro, P. Ferraresi, L. Usvyat, J. Larkin, J. Rosemberg, S. Stuard, L. Neri
Jazyk angličtina Země Itálie
Typ dokumentu časopisecké články, validační studie
- MeSH
- ambulantní péče * MeSH
- časové faktory MeSH
- chronická renální insuficience * terapie diagnóza MeSH
- hodnocení rizik metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- náhrada funkce ledvin statistika a číselné údaje MeSH
- nefrologie * MeSH
- nemocnice veřejné MeSH
- prognóza MeSH
- progrese nemoci MeSH
- senioři MeSH
- seznamy čekatelů * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Geografické názvy
- Itálie MeSH
BACKGROUND: The management of patients with non-dialysis dependent chronic kidney disease (NDD-CKD) is challenging due to coexisting diseases, competing risks and uncertainties around optimal transition planning. Such clinical challenges are further exacerbated by physician shortage, coupled with rising service demands, which may hinder timely medical access due to long waiting times. Accurate progression risk assessment may help optimize resource allocation and adapting care based on individual patients' needs. This study validated the Prognostic Reasoning System for Chronic Kidney Disease Progression (PROGRES-CKD) in an Italian public hospital and compared its potential impact on waiting list optimization against physician-based protocols. METHODS: First we first validated PROGRES-CKD by assessing its accuracy in predicting kidney replacement therapy (KRT) initiation within 6 months and 24 months in a historical cohort of patients treated at the San Gerardo Hospital (Italy) between 01-01-2015 and 31-12-2019. In a second study we compared PROGRES-CKD to attending nephrologists' prognostic ratings and simulated their potential impact on a waiting list management protocol. RESULTS: We included 2005 patients who underwent 11,757 outpatient nephrology visits in 4 years. Most visits occurred for NDD-CKD stage 4 patients; the incidence of KRT onset was 10.8 and 9.32/100 patient-years at the 6 and 24-month prediction horizon cohorts, respectively. PROGRES-CKD demonstrated high accuracy in predicting KRT initiation at 6 and 24 months (AUROC = 0.88 and AUROC = 0.85, respectively). Nephrologists' prognostic performance was highly operator-dependent, albeit always significantly lower than PROGRES-CKD. In the simulation exercise, allocation based on PROGRES-CKD resulted in more follow-up visits for patients progressing to end-stage kidney disease (ESKD) and fewer visits for non-progressing patients, compared to allocation determined by nephrologists' prognosis. CONCLUSIONS: PROGRES-CKD showed high accuracy in a real-world application. Waiting list simulation suggests that PROGRES-CKD may enable more efficient allocation of resources.
Clinical Advanced Analytics Global Medical Office Fresenius Medical Care Waltham USA
Department of Medicine and Surgery University of Milano Bicocca Milan Italy
FMC Dialysis Services Slovakia Bratislava Slovakia
Institute of Social Health at Palacký University Olomouc Olomouc Czech Republic
Marketing Department Fresenius Medical Care Italia Spa Crema Italy
Medical Faculty University of PJ Safarik Kosice Slovakia
Nephrology and Dialysis Unit ASST Monza San Gerardo Hospital Monza Italy
Santa Barbara Smart Health GDTI Fresenius Medical Care Valencia Spain
Struttura Complessa Nefrologia e Dialisi ASST Nord Milano Milan Italy
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015940
- 003
- CZ-PrNML
- 005
- 20250731091353.0
- 007
- ta
- 008
- 250708s2025 it f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s40620-025-02222-8 $2 doi
- 035 __
- $a (PubMed)40014297
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a it
- 100 1_
- $a Fabbrini, Paolo $u Struttura Complessa Nefrologia e Dialisi ASST Nord Milano, Milan, Italy. paolo.fabbrini@gmail.com $u President of Lombardy Section of the Italian Society of Nephrology, Medical Director - Struttura Complessa di Nefrologia, ASST Nord Milano Ospedale Bassini, via Gorky 50, 20092, Cinisello Balsamo, MI, Italy. paolo.fabbrini@gmail.com
- 245 14
- $a The prognostic reasoning system for chronic kidney disease progression (PROGRES-CKD) may help improve waiting list management for outpatient nephrology services in a second-level public hospital in Italy / $c P. Fabbrini, F. Pieruzzi, F. Bellocchio, R. Casana Eslava, J. Silvestre Llopis, K. Morillo Navarro, P. Ferraresi, L. Usvyat, J. Larkin, J. Rosemberg, S. Stuard, L. Neri
- 520 9_
- $a BACKGROUND: The management of patients with non-dialysis dependent chronic kidney disease (NDD-CKD) is challenging due to coexisting diseases, competing risks and uncertainties around optimal transition planning. Such clinical challenges are further exacerbated by physician shortage, coupled with rising service demands, which may hinder timely medical access due to long waiting times. Accurate progression risk assessment may help optimize resource allocation and adapting care based on individual patients' needs. This study validated the Prognostic Reasoning System for Chronic Kidney Disease Progression (PROGRES-CKD) in an Italian public hospital and compared its potential impact on waiting list optimization against physician-based protocols. METHODS: First we first validated PROGRES-CKD by assessing its accuracy in predicting kidney replacement therapy (KRT) initiation within 6 months and 24 months in a historical cohort of patients treated at the San Gerardo Hospital (Italy) between 01-01-2015 and 31-12-2019. In a second study we compared PROGRES-CKD to attending nephrologists' prognostic ratings and simulated their potential impact on a waiting list management protocol. RESULTS: We included 2005 patients who underwent 11,757 outpatient nephrology visits in 4 years. Most visits occurred for NDD-CKD stage 4 patients; the incidence of KRT onset was 10.8 and 9.32/100 patient-years at the 6 and 24-month prediction horizon cohorts, respectively. PROGRES-CKD demonstrated high accuracy in predicting KRT initiation at 6 and 24 months (AUROC = 0.88 and AUROC = 0.85, respectively). Nephrologists' prognostic performance was highly operator-dependent, albeit always significantly lower than PROGRES-CKD. In the simulation exercise, allocation based on PROGRES-CKD resulted in more follow-up visits for patients progressing to end-stage kidney disease (ESKD) and fewer visits for non-progressing patients, compared to allocation determined by nephrologists' prognosis. CONCLUSIONS: PROGRES-CKD showed high accuracy in a real-world application. Waiting list simulation suggests that PROGRES-CKD may enable more efficient allocation of resources.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a seznamy čekatelů $7 D014850
- 650 _2
- $a progrese nemoci $7 D018450
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 12
- $a chronická renální insuficience $x terapie $x diagnóza $7 D051436
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a nemocnice veřejné $7 D006779
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a prognóza $7 D011379
- 650 12
- $a nefrologie $7 D009398
- 650 _2
- $a hodnocení rizik $x metody $7 D018570
- 650 12
- $a ambulantní péče $7 D000553
- 650 _2
- $a náhrada funkce ledvin $x statistika a číselné údaje $7 D017582
- 650 _2
- $a časové faktory $7 D013997
- 651 _2
- $a Itálie $7 D007558
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Pieruzzi, Federico $u Nephrology and Dialysis Unit, ASST Monza San Gerardo Hospital, Monza, Italy $u Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- 700 1_
- $a Bellocchio, Francesco $u Data Science Division, EMEA, APAC, LATAM Regions - Clinical Advanced Analytics, Global Medical Office, Fresenius Medical Care, Italia Spa, Crema, Italy
- 700 1_
- $a Casana Eslava, Raul $u Santa Barbara Smart Health, GDTI, Fresenius Medical Care, Valencia, Spain
- 700 1_
- $a Silvestre Llopis, Jordi $u Santa Barbara Smart Health, GDTI, Fresenius Medical Care, Valencia, Spain
- 700 1_
- $a Morillo Navarro, Kevin $u Santa Barbara Smart Health, GDTI, Fresenius Medical Care, Valencia, Spain
- 700 1_
- $a Ferraresi, Paola $u Marketing Department, Fresenius Medical Care, Italia Spa, Crema, Italy
- 700 1_
- $a Usvyat, Len $u Clinical Advanced Analytics, Global Medical Office, Fresenius Medical Care, Waltham, USA
- 700 1_
- $a Larkin, John $u Clinical Advanced Analytics, Global Medical Office, Fresenius Medical Care, Waltham, USA
- 700 1_
- $a Rosemberg, Jaroslav $u FMC-Dialysis Services Slovakia, Bratislava, Slovakia $u Medical Faculty, University of PJ Safarik, Kosice, Slovakia $u Institute of Social Health at Palacký University Olomouc (OUSHI), Olomouc, Czech Republic
- 700 1_
- $a Stuard, Stefano $u Global Medical Office, Clinical Affairs, CoE Clinical & Therapeutic Governance, Fresenius Medical Care Italia Spa, Crema, Italy
- 700 1_
- $a Neri, Luca $u Data Science Division, EMEA, APAC, LATAM Regions - Clinical Advanced Analytics, Global Medical Office, Fresenius Medical Care, Italia Spa, Crema, Italy
- 773 0_
- $w MED00002821 $t JN. Journal of nephrology $x 1724-6059 $g Roč. 38, č. 4 (2025), s. 1219-1227
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40014297 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091348 $b ABA008
- 999 __
- $a ok $b bmc $g 2366643 $s 1253065
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 38 $c 4 $d 1219-1227 $e 20250227 $i 1724-6059 $m JN. Journal of nephrology $n J Nephrol $x MED00002821
- LZP __
- $a Pubmed-20250708