-
Je něco špatně v tomto záznamu ?
Ranking of apparent drug affinity to mesoporous silica utilizing a chromatographic screening method and a tree-based prediction model
A. Niederquell, B. Vraníková, M. Kuentz
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
- MeSH
- chromatografie kapalinová metody MeSH
- hydrofobní a hydrofilní interakce MeSH
- léčivé přípravky chemie MeSH
- nosiče léků * chemie MeSH
- oxid křemičitý * chemie MeSH
- poréznost MeSH
- strojové učení MeSH
- uvolňování léčiv MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
Mesoporous silica has emerged as a promising component in bio-enabling formulation strategy. However, there is currently a lack of predictive tools for assessing drug-silica interactions in a preformulation phase, when formulators only have minimal material to guide them. This study proposes a solution: a chromatographic method to rank apparent drug-silica affinity for mesoporous formulations. Using a dataset of 52 drugs, a hydrophilic liquid interaction chromatography (HILIC) screening method was developed, with a stationary silica phase to simulate the drug carrier. Molecular descriptors were calculated for various compounds to analyze HILIC retention times using a tree-based machine learning algorithm. For silica affinity, the distribution coefficient (LogD), the molecular shape descriptor Kappa1, and the number of conjugated bonds (NCB) were identified as possible critical parameters. Additionally, an amine-modified HILIC column was evaluated to simulate a surface-modified silica carrier. The classification tree analysis revealed that Abraham's hydrogen bonding acidity, the NCB and the pKa were determinants for a qualitative assessment of drug affinity to the modified silica. The classification into low, moderate, and high affinity to the stationary phase appeared to be useful in understanding drug release from mesoporous silica formulations, highlighting its potential for future research.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021591
- 003
- CZ-PrNML
- 005
- 20251023075727.0
- 007
- ta
- 008
- 251014e20250701ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ijpharm.2025.125918 $2 doi
- 035 __
- $a (PubMed)40609712
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Niederquell, Andreas $u Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30 4132 Muttenz, Switzerland
- 245 10
- $a Ranking of apparent drug affinity to mesoporous silica utilizing a chromatographic screening method and a tree-based prediction model / $c A. Niederquell, B. Vraníková, M. Kuentz
- 520 9_
- $a Mesoporous silica has emerged as a promising component in bio-enabling formulation strategy. However, there is currently a lack of predictive tools for assessing drug-silica interactions in a preformulation phase, when formulators only have minimal material to guide them. This study proposes a solution: a chromatographic method to rank apparent drug-silica affinity for mesoporous formulations. Using a dataset of 52 drugs, a hydrophilic liquid interaction chromatography (HILIC) screening method was developed, with a stationary silica phase to simulate the drug carrier. Molecular descriptors were calculated for various compounds to analyze HILIC retention times using a tree-based machine learning algorithm. For silica affinity, the distribution coefficient (LogD), the molecular shape descriptor Kappa1, and the number of conjugated bonds (NCB) were identified as possible critical parameters. Additionally, an amine-modified HILIC column was evaluated to simulate a surface-modified silica carrier. The classification tree analysis revealed that Abraham's hydrogen bonding acidity, the NCB and the pKa were determinants for a qualitative assessment of drug affinity to the modified silica. The classification into low, moderate, and high affinity to the stationary phase appeared to be useful in understanding drug release from mesoporous silica formulations, highlighting its potential for future research.
- 650 12
- $a oxid křemičitý $x chemie $7 D012822
- 650 _2
- $a hydrofobní a hydrofilní interakce $7 D057927
- 650 _2
- $a poréznost $7 D016062
- 650 _2
- $a léčivé přípravky $x chemie $7 D004364
- 650 12
- $a nosiče léků $x chemie $7 D004337
- 650 _2
- $a chromatografie kapalinová $x metody $7 D002853
- 650 _2
- $a uvolňování léčiv $7 D065546
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a vodíková vazba $7 D006860
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Vraníková, Barbora $u Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- 700 1_
- $a Kuentz, Martin $u Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30 4132 Muttenz, Switzerland. Electronic address: martin.kuentz@fhnw.ch
- 773 0_
- $w MED00002359 $t International journal of pharmaceutics $x 1873-3476 $g Roč. 682 (20250701), s. 125918
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40609712 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023075733 $b ABA008
- 999 __
- $a ok $b bmc $g 2416796 $s 1259754
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 682 $c - $d 125918 $e 20250701 $i 1873-3476 $m International journal of pharmaceutics $n Int J Pharm $x MED00002359
- LZP __
- $a Pubmed-20251014