• Je něco špatně v tomto záznamu ?

Ranking of apparent drug affinity to mesoporous silica utilizing a chromatographic screening method and a tree-based prediction model

A. Niederquell, B. Vraníková, M. Kuentz

. 2025 ; 682 (-) : 125918. [pub] 20250701

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25021591

Mesoporous silica has emerged as a promising component in bio-enabling formulation strategy. However, there is currently a lack of predictive tools for assessing drug-silica interactions in a preformulation phase, when formulators only have minimal material to guide them. This study proposes a solution: a chromatographic method to rank apparent drug-silica affinity for mesoporous formulations. Using a dataset of 52 drugs, a hydrophilic liquid interaction chromatography (HILIC) screening method was developed, with a stationary silica phase to simulate the drug carrier. Molecular descriptors were calculated for various compounds to analyze HILIC retention times using a tree-based machine learning algorithm. For silica affinity, the distribution coefficient (LogD), the molecular shape descriptor Kappa1, and the number of conjugated bonds (NCB) were identified as possible critical parameters. Additionally, an amine-modified HILIC column was evaluated to simulate a surface-modified silica carrier. The classification tree analysis revealed that Abraham's hydrogen bonding acidity, the NCB and the pKa were determinants for a qualitative assessment of drug affinity to the modified silica. The classification into low, moderate, and high affinity to the stationary phase appeared to be useful in understanding drug release from mesoporous silica formulations, highlighting its potential for future research.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25021591
003      
CZ-PrNML
005      
20251023075727.0
007      
ta
008      
251014e20250701ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ijpharm.2025.125918 $2 doi
035    __
$a (PubMed)40609712
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Niederquell, Andreas $u Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30 4132 Muttenz, Switzerland
245    10
$a Ranking of apparent drug affinity to mesoporous silica utilizing a chromatographic screening method and a tree-based prediction model / $c A. Niederquell, B. Vraníková, M. Kuentz
520    9_
$a Mesoporous silica has emerged as a promising component in bio-enabling formulation strategy. However, there is currently a lack of predictive tools for assessing drug-silica interactions in a preformulation phase, when formulators only have minimal material to guide them. This study proposes a solution: a chromatographic method to rank apparent drug-silica affinity for mesoporous formulations. Using a dataset of 52 drugs, a hydrophilic liquid interaction chromatography (HILIC) screening method was developed, with a stationary silica phase to simulate the drug carrier. Molecular descriptors were calculated for various compounds to analyze HILIC retention times using a tree-based machine learning algorithm. For silica affinity, the distribution coefficient (LogD), the molecular shape descriptor Kappa1, and the number of conjugated bonds (NCB) were identified as possible critical parameters. Additionally, an amine-modified HILIC column was evaluated to simulate a surface-modified silica carrier. The classification tree analysis revealed that Abraham's hydrogen bonding acidity, the NCB and the pKa were determinants for a qualitative assessment of drug affinity to the modified silica. The classification into low, moderate, and high affinity to the stationary phase appeared to be useful in understanding drug release from mesoporous silica formulations, highlighting its potential for future research.
650    12
$a oxid křemičitý $x chemie $7 D012822
650    _2
$a hydrofobní a hydrofilní interakce $7 D057927
650    _2
$a poréznost $7 D016062
650    _2
$a léčivé přípravky $x chemie $7 D004364
650    12
$a nosiče léků $x chemie $7 D004337
650    _2
$a chromatografie kapalinová $x metody $7 D002853
650    _2
$a uvolňování léčiv $7 D065546
650    _2
$a strojové učení $7 D000069550
650    _2
$a vodíková vazba $7 D006860
655    _2
$a časopisecké články $7 D016428
700    1_
$a Vraníková, Barbora $u Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
700    1_
$a Kuentz, Martin $u Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30 4132 Muttenz, Switzerland. Electronic address: martin.kuentz@fhnw.ch
773    0_
$w MED00002359 $t International journal of pharmaceutics $x 1873-3476 $g Roč. 682 (20250701), s. 125918
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40609712 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20251014 $b ABA008
991    __
$a 20251023075733 $b ABA008
999    __
$a ok $b bmc $g 2416796 $s 1259754
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 682 $c - $d 125918 $e 20250701 $i 1873-3476 $m International journal of pharmaceutics $n Int J Pharm $x MED00002359
LZP    __
$a Pubmed-20251014

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...