-
Je něco špatně v tomto záznamu ?
Spectral and network investigation reveals distinct power and connectivity patterns between phasic and tonic REM sleep
T. Avigdor, L. Peter-Derex, A. Ho, K. Schiller, Y. Wang, C. Abdallah, E. Delaire, K. Jaber, V. Travnicek, C. Grova, B. Frauscher
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
RGPIN2020-04127
Natural Sciences and Engineering Research Council of Canada
PJT-175056
CIHR - Canada
NLK
Free Medical Journals
od 1978 do Před 6 měsíci
ProQuest Central
od 2016-10-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2016-10-01 do Před 1 rokem
Psychology Database (ProQuest)
od 2016-10-01 do Před 1 rokem
PubMed
40394955
DOI
10.1093/sleep/zsaf133
Knihovny.cz E-zdroje
- MeSH
- bdění fyziologie MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- nervová síť * fyziologie MeSH
- polysomnografie MeSH
- spánek REM * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Although rapid eye movement (REM) sleep is often thought of as a singular state, it consists of two substates, phasic and tonic REM, defined by the presence (respectively absence) of bursts of rapid eye movements. These two substates have distinct EEG signatures and functional properties. However, whether they exhibit regional specificities remains unknown. Using intracranial EEG recordings from 31 patients, we analyzed expert-labeled segments from tonic and phasic REM and contrasted them with wakefulness segments. We assessed the spectral and connectivity content of these segments using Welch's method to estimate power spectral density and the phase locking value to assess functional connectivity. Overall, we found a widespread power gradient between low and high frequencies (p < 0.05, Cohen's d = 0.17 ± 0.20), with tonic REM being dominated by lower frequencies (p < 0.01, d = 0.18 ± 0.08), and phasic REM by higher frequencies (p < 0.01, d = 0.18 ± 0.19). However, some regions, such as the occipito-temporal areas as well as medial frontal regions, exhibit opposite trends. Connectivity was overall higher in all bands except in the low and high ripple frequency bands in most networks during tonic REM (p < 0.01, d = 0.08 ± 0.09) compared to phasic REM. Yet, functional connections involving the visual network were always stronger during phasic REM when compared to tonic REM. These findings highlight the spatiotemporal heterogeneity of REM sleep which is consistent with the concept of focal sleep in humans.
Analytical Neurophysiological Lab Department of Neurology Duke University Durham North Carolina USA
Analytical Neurophysiology Lab McGill University Montreal Quebec Canada
Department of Biomedical Engineering Duke Pratt School of Engineering Durham North Carolina USA
Institute of Scientific Instruments Czech Academy of Sciences Brno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25022008
- 003
- CZ-PrNML
- 005
- 20251023080012.0
- 007
- ta
- 008
- 251014s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/sleep/zsaf133 $2 doi
- 035 __
- $a (PubMed)40394955
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Avigdor, Tamir $u Analytical Neurophysiology Lab, McGill University, Montreal, Quebec, Canada $u Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada
- 245 10
- $a Spectral and network investigation reveals distinct power and connectivity patterns between phasic and tonic REM sleep / $c T. Avigdor, L. Peter-Derex, A. Ho, K. Schiller, Y. Wang, C. Abdallah, E. Delaire, K. Jaber, V. Travnicek, C. Grova, B. Frauscher
- 520 9_
- $a Although rapid eye movement (REM) sleep is often thought of as a singular state, it consists of two substates, phasic and tonic REM, defined by the presence (respectively absence) of bursts of rapid eye movements. These two substates have distinct EEG signatures and functional properties. However, whether they exhibit regional specificities remains unknown. Using intracranial EEG recordings from 31 patients, we analyzed expert-labeled segments from tonic and phasic REM and contrasted them with wakefulness segments. We assessed the spectral and connectivity content of these segments using Welch's method to estimate power spectral density and the phase locking value to assess functional connectivity. Overall, we found a widespread power gradient between low and high frequencies (p < 0.05, Cohen's d = 0.17 ± 0.20), with tonic REM being dominated by lower frequencies (p < 0.01, d = 0.18 ± 0.08), and phasic REM by higher frequencies (p < 0.01, d = 0.18 ± 0.19). However, some regions, such as the occipito-temporal areas as well as medial frontal regions, exhibit opposite trends. Connectivity was overall higher in all bands except in the low and high ripple frequency bands in most networks during tonic REM (p < 0.01, d = 0.08 ± 0.09) compared to phasic REM. Yet, functional connections involving the visual network were always stronger during phasic REM when compared to tonic REM. These findings highlight the spatiotemporal heterogeneity of REM sleep which is consistent with the concept of focal sleep in humans.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a spánek REM $x fyziologie $7 D012895
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a elektroencefalografie $7 D004569
- 650 _2
- $a bdění $x fyziologie $7 D014851
- 650 12
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a nervová síť $x fyziologie $7 D009415
- 650 _2
- $a polysomnografie $7 D017286
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Peter-Derex, Laure $u Center for Sleep Medicine, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, FranceLyon Neuroscience Research Center, PAM Team, INSERM U1028 / CNRS UMR 5292 / Lyon 1 University, Lyon, France $1 https://orcid.org/0000000299389639
- 700 1_
- $a Ho, Alyssa $u Analytical Neurophysiological Lab, Department of Neurology, Duke University, Durham, North Carolina, USA
- 700 1_
- $a Schiller, Katharina $u Analytical Neurophysiology Lab, McGill University, Montreal, Quebec, Canada $1 https://orcid.org/0000000221633857
- 700 1_
- $a Wang, Yingqi $u Analytical Neurophysiology Lab, McGill University, Montreal, Quebec, Canada
- 700 1_
- $a Abdallah, Chifaou $u Analytical Neurophysiology Lab, McGill University, Montreal, Quebec, Canada $u Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada
- 700 1_
- $a Delaire, Edouard $u Multimodal Functional Imaging Lab, Department of Physics, PERFORM Center / School of Health, Concordia University, Montreal, Quebec, Canada $1 https://orcid.org/0000000314211071
- 700 1_
- $a Jaber, Kassem $u Analytical Neurophysiological Lab, Department of Neurology, Duke University, Durham, North Carolina, USA $u Department of Biomedical Engineering. Duke Pratt School of Engineering, Durham, North Carolina, USA
- 700 1_
- $a Travnicek, Vojtech $u Institute of Scientific Instruments, Czech Academy of Sciences, Brno, Czech Republic $u International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Grova, Christophe $u Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada $u Multimodal Functional Imaging Lab, Department of Physics, PERFORM Center / School of Health, Concordia University, Montreal, Quebec, Canada
- 700 1_
- $a Frauscher, Birgit $u Analytical Neurophysiology Lab, McGill University, Montreal, Quebec, Canada $u Analytical Neurophysiological Lab, Department of Neurology, Duke University, Durham, North Carolina, USA $u Department of Biomedical Engineering. Duke Pratt School of Engineering, Durham, North Carolina, USA
- 773 0_
- $w MED00004377 $t Sleep $x 1550-9109 $g Roč. 48, č. 8 (2025)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40394955 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023080018 $b ABA008
- 999 __
- $a ok $b bmc $g 2417051 $s 1260171
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 48 $c 8 $e 20250814 $i 1550-9109 $m Sleep $n Sleep $x MED00004377
- GRA __
- $a RGPIN2020-04127 $p Natural Sciences and Engineering Research Council of Canada
- GRA __
- $a PJT-175056 $p CIHR $2 Canada
- LZP __
- $a Pubmed-20251014