• Je něco špatně v tomto záznamu ?

A Novel Tool for Supervised Segmentation Using 3D Slicer

. 2018 ; 10 (11) : 627. [pub] 20181112

Status minimální Jazyk angličtina

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25025676

Grantová podpora
NV18-08-00459 MZ0 CEP - Centrální evidence projektů

The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25025676
003      
CZ-PrNML
005      
20251212152507.0
007      
ta
008      
251210s2018 ||| f 000 0|eng||
009      
AR
024    7_
$a 10.3390/sym10110627 $2 doi
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
100    1_
$a Chalupa, Daniel $u Department of Theoretical and Experimental Electrical Engineering, Brno University of Technology, Technická 3082/12, 616 00 Brno, Czech Republic $1 https://orcid.org/0000-0002-7242-0288
245    10
$a A Novel Tool for Supervised Segmentation Using 3D Slicer
520    9_
$a The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mikulka, Jan $u Department of Theoretical and Experimental Electrical Engineering, Brno University of Technology, Technická 3082/12, 616 00 Brno, Czech Republic
773    0_
$w def $t Symmetry $x 2073-8994 $g Roč. 10, č. 11 (2018), s. 627
910    __
$a ABA008 $b sig $c signa $y -
990    __
$a 20251202 $b ABA008
999    __
$a min $b bmc $g 2446178 $s 1263874
BAS    __
$a 3 $a PreBMC
BMC    __
$a 2018 $b 10 $c 11 $d 627 $e 20181112 $i 2073-8994 $m Symmetry $x def
GRA    __
$a NV18-08-00459 $p MZ0
LZP    __
$a AZV-2021-Crossref-20251210

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...