Studies on methanol - oxidizing yeast. III. Enzyme
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
240764
DOI
10.1007/bf02878112
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- aldehydoxidoreduktasy metabolismus MeSH
- alkoholoxidoreduktasy metabolismus MeSH
- alkoholy metabolismus MeSH
- Candida enzymologie růst a vývoj MeSH
- EDTA farmakologie MeSH
- formaldehyd metabolismus MeSH
- formiáty metabolismus MeSH
- jodacetáty farmakologie MeSH
- katalasa metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kyanidy farmakologie MeSH
- methanol metabolismus MeSH
- NAD farmakologie MeSH
- NADP farmakologie MeSH
- peroxid vodíku metabolismus MeSH
- peroxidasy metabolismus MeSH
- spotřeba kyslíku MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldehydoxidoreduktasy MeSH
- alkoholoxidoreduktasy MeSH
- alkoholy MeSH
- EDTA MeSH
- formaldehyd MeSH
- formiáty MeSH
- jodacetáty MeSH
- katalasa MeSH
- kyanidy MeSH
- methanol MeSH
- NAD MeSH
- NADP MeSH
- peroxid vodíku MeSH
- peroxidasy MeSH
Oxidation of methanol, formaldehyde and formic acid was studied in cells and cell-free extract of the yeast Candida boidinii No. 11Bh. Methanol oxidase, an enzyme oxidizing methanol to formaldehyde, was formed inducibly after the addition of methanol to yeast cells. The oxidation of methanol by cell-free extract was dependent on the presence of oxygen and independent of any addition of nicotine-amide nucleotides. Temperature optimum for the oxidation of methanol to formaldehyde was 35 degrees C, pH optimum was 8.5. The Km for methanol was 0.8mM. The cell-free extract exhibited a broad substrate specificity towards primary alcohols (C1--C6). The activity of methanol oxidase was not inhibited by 1mM KCN, EDTA or monoiodoacetic acid. The strongest inhibitory action was exerted by p-chloromercuribenzoate. Both the cells and the cell-free extract contained catalase which participated in the oxidation of methanol to formaldehyde; the enzyme was constitutively formed by the yeast. The pH optimum for the degradation of H2O2 was in the same range as the optimum for methanol oxidation, viz. at 8.5. Catalase was more resistant to high pH than methanol oxidase. The cell-free extract contained also GSH-dependent NAD-formaldehyde dehydrogenase with Km = 0.29mM and NAD-formate dehydrogenase with Km = 55mM.
Zobrazit více v PubMed
J Biol Chem. 1957 Dec;229(2):905-20 PubMed
Can J Microbiol. 1959 Apr;5(2):187-95 PubMed
Biochem J. 1964 Sep;92(3):614-21 PubMed
FEBS Lett. 1974 May 1;41(2):283-6 PubMed
Biochem J. 1965 Sep;96(3):808-12 PubMed
Folia Microbiol (Praha). 1974;19(4):249-56 PubMed
J Bacteriol. 1971 Jul;107(1):187-92 PubMed
Biochem J. 1967 Sep;104(3):953-9 PubMed
Antonie Van Leeuwenhoek. 1973;39(2):303-12 PubMed
J Biol Chem. 1962 Mar;237:922-8 PubMed
Folia Microbiol (Praha). 1974;19(5):373-7 PubMed
Eur J Biochem. 1973 Jul 2;36(1):250-6 PubMed
Biochem J. 1951 Oct;49(5):704-9 PubMed
Can J Microbiol. 1960 Feb;6:1-7 PubMed
Arch Mikrobiol. 1973;90(3):263-8 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed
J Gen Microbiol. 1962 Nov;29:403-19 PubMed
Biochem J. 1964 Nov;93(2):281-90 PubMed
J Biol Chem. 1954 Sep;210(1):465-80 PubMed
Effect of increasing methanol concentrations on physiology and cytology of Candida boidinii
Characterization of catalase-negative mutants of methylotrophic yeast Hansenula polymorpha
Alcohol oxidase of methylotrophic thermo- and acidotolerant yeast Hansenula sp
Oxidation of methanol, formaldehyde and formic acid by methanol-utilizing yeast