A hierarchy of determining factors controls motoneuron innervation. Experimental studies on the development of the plantaris muscle (PL) in avian chimeras
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
PubMed
2802182
DOI
10.1007/bf00309770
Knihovny.cz E-zdroje
- MeSH
- chiméra MeSH
- končetiny MeSH
- křepelky a křepelovití MeSH
- kuřecí embryo MeSH
- motorické neurony fyziologie MeSH
- ptáci embryologie MeSH
- svaly cytologie inervace MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
Quail leg buds were grafted in place of chick leg buds or chick wing buds and vice versa at stages 18 to 21 after colonization by muscle precursor cells had been completed. Motor endplate pattern in the plantaris muscle of the grafts was analyzed before hatching by means of esterase and acetylcholinesterase staining techniques. Muscle fibre types were made visual using the myosin ATPase reaction. Investigations are based on the species-specific endplate pattern of the plantaris muscle: multiply innervated fibres in the chick and focally innervated fibres in the quail. Muscle pieces isolated from the adjacent medial gastrocnemius muscle of the grafted legs were histologically examined to judge their species-specific composition. Horseradish peroxidase was injected into the plantaris muscles of both the grafted and the opposite leg as well as in the plantaris muscle of normal quail embryos, in order to be sure that the plantaris muscle of the grafts is innervated by appropriate motoneurons. This procedural design offers for the first time a possibility to test experimentally the influences of motoneurons on endplate pattern formation under conditions corresponding to those in normal ontogenesis. It is shown that such appropriate motoneurons of one species which project to the plantaris muscle of the other species dictate the endplate pattern. When the plantaris muscle is innervated by inappropriate motoneurons, the endplate pattern inherent in the muscle primordium itself becomes realized. A sequence of hierarchically acting factors is proposed to bring different results in line. According to this, the neuronally set programme has priority compared with that set in the muscle. This is true for the normal development and might generate the high neuro-muscular specificity. If under experimental conditions the neuronal programme and the peripheral programme differ, the axons and muscle fibres selectively interact with respect to their inherent characteristics and the muscle-specific programme becomes expressed. If there is a lack of a certain axon type, muscle fibres might become innervated by non-corresponding motoneurons which alter the muscle fibre type.
Zobrazit více v PubMed
Arch Anat Microsc Morphol Exp. 1982;71(4):193-206 PubMed
J Morphol. 1951 Jan;88(1):49-92 PubMed
Bull Biol Fr Belg. 1969;103(3):435-52 PubMed
Curr Top Dev Biol. 1980;15 Pt 1:181-215 PubMed
J Exp Biol. 1985 Mar;115:113-23 PubMed
Mikroskopie. 1971 Dec;27(9):267-70 PubMed
Exp Neurol. 1970 Aug;28(2):365-7 PubMed
Physiol Bohemoslov. 1971;20(3):199-204 PubMed
Experientia. 1974 Dec 15;30(12):1446-9 PubMed
Biol Cell. 1987;61(3):163-70 PubMed
J Physiol. 1967 Nov;193(2):309-25 PubMed
Dev Biol. 1987 Feb;119(2):481-95 PubMed
J Histochem Cytochem. 1964 Mar;12:219-21 PubMed
Dev Biol. 1988 Apr;126(2):394-407 PubMed
Arch Anat Microsc Morphol Exp. 1980;69(2):135-45 PubMed
J Physiol. 1960 Dec;154:581-98 PubMed
Anat Embryol (Berl). 1977 Mar 30;150(2):171-86 PubMed
Physiol Bohemoslov. 1985;34(3):247-8 PubMed
Z Zellforsch Mikrosk Anat. 1973 Dec 31;146(1):103-21 PubMed
Dev Biol. 1984 Dec;106(2):457-68 PubMed
J Embryol Exp Morphol. 1983 Dec;78:67-82 PubMed
Anat Embryol (Berl). 1979;157(3):291-309 PubMed
J Physiol. 1974 Sep;241(2):547-73 PubMed
J Physiol. 1975 Jul;249(2):301-26 PubMed
J Embryol Exp Morphol. 1983 Dec;78:53-66 PubMed
J Exp Zool. 1982 Nov 20;224(1):65-80 PubMed
Annu Rev Neurosci. 1980;3:279-302 PubMed
J Embryol Exp Morphol. 1977 Oct;41:245-58 PubMed
Dev Biol. 1988 Apr;126(2):408-19 PubMed
J Physiol. 1961 Jul;157:221-31 PubMed
Exp Neurol. 1978 Jun;60(2):189-200 PubMed
C R Acad Sci Hebd Seances Acad Sci D. 1976 Jan 19;282(3):309-11 PubMed
Verh Anat Ges. 1978;(72):353-7 PubMed
J Histochem Cytochem. 1986 Jul;34(7):953-7 PubMed
Physiol Bohemoslov. 1974;23(6):511-20 PubMed
J Physiol. 1982 Oct;331:333-54 PubMed
J Physiol. 1978 Nov;284:371-89 PubMed
Physiol Rev. 1983 Jul;63(3):915-1048 PubMed
J Histochem Cytochem. 1955 May;3(3):161-9 PubMed
J Embryol Exp Morphol. 1986 Jun;95:147-68 PubMed
Brain Res. 1977 Aug 26;132(2):197-208 PubMed
Cell Differ. 1979 Oct;8(5):375-82 PubMed
J Neurosci. 1986 Oct;6(10):2880-8 PubMed
Lab Invest. 1958 Mar-Apr;7(2):171-3 PubMed
Acta Histochem Suppl. 1986;32:145-50 PubMed