Glucose repression of maltase and methanol-oxidizing enzymes in the methylotrophic yeast Hansenula polymorpha: isolation and study of regulatory mutants
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
9821297
DOI
10.1007/bf02820789
Knihovny.cz E-zdroje
- MeSH
- alfa-glukosidasy biosyntéza genetika metabolismus MeSH
- alkoholoxidoreduktasy biosyntéza genetika metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- enzymová represe MeSH
- glukosa metabolismus farmakologie MeSH
- kultivační média MeSH
- methanol metabolismus MeSH
- oxidace-redukce MeSH
- Pichia enzymologie genetika růst a vývoj MeSH
- regulace genové exprese u hub * MeSH
- represorové proteiny metabolismus MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alcohol oxidase MeSH Prohlížeč
- alfa-glukosidasy MeSH
- alkoholoxidoreduktasy MeSH
- bakteriální proteiny MeSH
- glukosa MeSH
- kultivační média MeSH
- methanol MeSH
- represorové proteiny MeSH
Regulation of the synthesis of maltase and methanol-oxidizing enzymes by the carbon source has been analyzed in the methylotrophic yeast Hansenula polymorpha. Maltase was shown to be responsible for the growth of H. polymorpha not only on maltose, but also on sucrose. The affinity of maltase towards maltase substrates decreased in the order: 4-nitrophenyl glucoside (PNPG) < sucrose < maltose. Mutants with glucose repression-insensitive synthesis of alcohol oxidase and maltase were obtained from H. polymorpha by mutagenesis and subsequent selection on methanol medium in the presence of 2-deoxy-D-glucose. One of the isolated mutants, L63, was studied in more detail. Mutant L63 was recessive and monogenic and it was not deficient in hexokinase. Its analysis revealed that H. polymorpha most probably has a repressor protein that in the presence of glucose can down-regulate expression of both maltase and enzymes of methanol oxidation.
Zobrazit více v PubMed
Mol Gen Genet. 1977 Jul 7;154(1):75-82 PubMed
Eur J Biochem. 1992 Jun 1;206(2):297-313 PubMed
Plant Cell. 1997 Jan;9(1):5-19 PubMed
Mol Microbiol. 1992 Jan;6(1):15-21 PubMed
Mol Gen Genet. 1988 Aug;213(2-3):535-40 PubMed
Eur J Biochem. 1996 May 15;238(1):181-91 PubMed
Biosci Biotechnol Biochem. 1993 Nov;57(11):1902-5 PubMed
Trends Genet. 1995 Jan;11(1):12-7 PubMed
Mol Microbiol. 1993 Mar;7(6):847-57 PubMed
Arch Microbiol. 1994;162(6):433-40 PubMed
J Bacteriol. 1987 Nov;169(11):4873-7 PubMed
FEMS Microbiol Rev. 1997 Aug;21(1):85-111 PubMed
Mol Gen Genet. 1977 Feb 28;151(1):95-103 PubMed
J Basic Microbiol. 1988;28(5):293-319 PubMed
Curr Genet. 1995 Mar;27(4):330-8 PubMed
FEMS Microbiol Lett. 1994 Jan 1;115(1):107-12 PubMed
Biochem J. 1993 May 1;291 ( Pt 3):765-71 PubMed
EMBO J. 1994 Sep 1;13(17):4022-7 PubMed
Yeast. 1994 Nov;10(11):1459-66 PubMed
Curr Genet. 1995 Aug;28(3):258-66 PubMed
EMBO J. 1991 Nov;10(11):3373-7 PubMed
Mol Microbiol. 1991 Sep;5(9):2079-84 PubMed
Biotechnol Bioeng. 1996 Oct 5;52(1):161-5 PubMed
Microbiology (Reading). 1997 Sep;143 ( Pt 9):2991-2998 PubMed
J Bacteriol. 1973 Feb;113(2):1073-5 PubMed
Yeast. 1992 May;8(5):361-72 PubMed
J Bacteriol. 1986 Jun;166(3):1123-7 PubMed
Gene. 1997 Apr 29;190(1):87-97 PubMed
Appl Environ Microbiol. 1987 Aug;53(8):1812-8 PubMed
J Bacteriol. 1992 Nov;174(21):6992-6 PubMed
FEMS Microbiol Rev. 1993 Apr;10(3-4):229-42 PubMed
Biokhimiia. 1983 Jan;48(1):62-8 PubMed