Calcium channels involved in the inhibition of acetylcholine release by presynaptic muscarinic receptors in rat striatum
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
2-R03-TW00171
FIC NIH HHS - United States
PubMed
10455319
PubMed Central
PMC1566163
DOI
10.1038/sj.bjp.0702721
PII: 0702721
Knihovny.cz E-zdroje
- MeSH
- acetylcholin metabolismus MeSH
- agonisté muskarinových receptorů farmakologie MeSH
- antagonisté dopaminu farmakologie MeSH
- antagonisté muskarinových receptorů farmakologie MeSH
- atropin farmakologie MeSH
- blokátory kalciových kanálů farmakologie MeSH
- cholinesterasové inhibitory farmakologie MeSH
- domperidon farmakologie MeSH
- haloperidol farmakologie MeSH
- karbachol farmakologie MeSH
- krysa rodu Rattus MeSH
- neostriatum účinky léků metabolismus MeSH
- omega-agatoxin IVA MeSH
- omega-konotoxin GVIA MeSH
- paraoxon farmakologie MeSH
- pavoučí jedy farmakologie MeSH
- peptidy farmakologie MeSH
- receptory muskarinové účinky léků metabolismus MeSH
- receptory presynaptické účinky léků metabolismus MeSH
- techniky in vitro MeSH
- vápníkové kanály účinky léků metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- acetylcholin MeSH
- agonisté muskarinových receptorů MeSH
- antagonisté dopaminu MeSH
- antagonisté muskarinových receptorů MeSH
- atropin MeSH
- blokátory kalciových kanálů MeSH
- cholinesterasové inhibitory MeSH
- domperidon MeSH
- haloperidol MeSH
- karbachol MeSH
- omega-agatoxin IVA MeSH
- omega-konotoxin GVIA MeSH
- paraoxon MeSH
- pavoučí jedy MeSH
- peptidy MeSH
- receptory muskarinové MeSH
- receptory presynaptické MeSH
- vápníkové kanály MeSH
1. The mechanism of the inhibitory action of presynaptic muscarinic receptors on the release of acetylcholine from striatal cholinergic neurons is not known. We investigated how the electrically stimulated release of [3H]-acetylcholine from superfused rat striatal slices and its inhibition by carbachol are affected by specific inhibitors of voltage-operated calcium channels of the L-type (nifedipine), N-type (omega-conotoxin GVIA) and P/Q-type (omega-agatoxin IVA). 2. The evoked release of [3H]-acetylcholine was not diminished by nifedipine but was lowered by omega-conotoxin GVIA and by omega-agatoxin IVA, indicating that both the N- and the P/Q-type (but not the L-type) channels are involved in the release. The N-type channels were responsible for approximately two thirds of the release. The release was >97% blocked when both omega-toxins acted together. 3. The inhibition of [3H]-acetylcholine release by carbachol was not substantially affected by the blockade of the L- or P/Q-type channels. It was diminished but not eliminated by the blockade of the N-type channels. 4. In experiments on slices in which cholinesterases had been inhibited by paraoxon, inhibition of [3H]-acetylcholine release by endogenous acetylcholine accumulating in the tissue could be demonstrated by the enhancement of the release after the addition of atropine. The inhibition was higher in slices with functional N-type than with functional P/Q-type channels. 5. We conclude that both the N- and the P/Q-type calcium channels contribute to the stimulation-evoked release of acetylcholine in rat striatum, that the quantitative contribution of the N-type channels is higher, and that the inhibitory muscarinic receptors are more closely coupled with the N-type than with the P/Q-type calcium channels.
Zobrazit více v PubMed
ADAMS M.E., MYERS R.A., IMPERIAL J.S., OLIVERA B.M. Toxityping rat brain calcium channels with gamma-toxins from spider and cone snail venoms. Biochemistry. 1993;32:12566–12570. PubMed
BOEHM S., HUCK S. Inhibition of N-type calcium channels. The only mechanism by which presynaptic alpha(2)-autoreceptors control sympathetic transmitter release. Eur. J. Neurosci. 1996;8:1924–1931. PubMed
COUSIN M.A., HURST H., NICHOLLS D.G. Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells. Neuroscience. 1997;81:151–161. PubMed
CUNNINGHAM S.M., MIHARA S., HIGASHI H. Presynaptic calcium channels mediating synaptic transmission in submucosal neurones of the guinea-pig caecum. J. Physiol. Lond. 1998;509:425–435. PubMed PMC
DELMAS P., BROWN D.A., DAYRELL M., ABOGADIE F.C., CAULFIELD M.P., BUCKLEY N.J. On the role of endogenous G-protein βγ subunits in N-type Ca2+ current inhibition by neurotransmitters in rat sympathetic neurones. J. Physiol. London. 1998;506:319–329. PubMed PMC
DOLEžAL V., HUANG H.Y., SCHOBERT A., HERTTING G. 3,4-Diaminopyridine masks the inhibition of noradrenaline release from chick sympathetic neurons via presynaptic α2-adrenoceptors: insights into the role of N- and L-type calcium channels. Brain Res. 1996;721:101–110. PubMed
DOLEžAL V., JACKISCH R., HERTTING G., ALLGAIER C. Activation of dopamine D1 receptors does not affect D2 receptor-mediated inhibition of acetylcholine release in rabbit striatum. Naunyn-Schmiedeberg's Arch. Pharmacol. 1992;345:16–20. PubMed
DOLEžAL V., TUčEK S. Failure of the calcium channel activator, Bay K 8644, to increase the release of acetylcholine from nerve terminals in brain and diaphragm. Br. J. Pharmacol. 1987;91:475–479. PubMed PMC
DOLEžAL V., TUčEK S. Effects of atropine on the release of newly synthesized acetylcholine from rat striatal slices at various concentrations of calcium ions. Neurochem. Res. 1990;15:41–45. PubMed
DOLEžAL V., TUčEK S. The effects of brucine and alcuronium on the inhibition of [3H]acetylcholine release from rat striatum by muscarinic receptor agonists. Br. J. Pharmacol. 1998;124:1213–1218. PubMed PMC
DOLEžAL V., TUčEK S., HYNIE S. Effects of pertussis toxin suggest a role for G-proteins in the inhibition of acetylcholine release from rat myenteric plexus by opioid and presynaptic muscarinic receptors. Eur. J. Neurosci. 1989;1:127–131. PubMed
DOLEžAL V., WECKER L. Muscarinic receptor blockade increases basal acetylcholine release from striatal slices. J. Pharmacol. Exp. Ther. 1990;252:739–743. PubMed
DOLPHIN A.C. Voltage-dependent calcium channels and their modulation by neurotransmitters and G proteins. Exp. Physiol. 1995;80:1–36. PubMed
DOLPHIN A.C. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. London. 1998;506:3–11. PubMed PMC
DOROSHENKO P.A., WOPPMANN A., MILJANICH G., AUGUSTINE G.J. Pharmacologically distinct presynaptic calcium channels in cerebellar excitatory and inhibitory synapses. Neuropharmacology. 1997;36:865–872. PubMed
DOUGHTY J.M., BARNES D., RUSZNAK Z., HARASZTOSI C., FORSYTHE I.D. Contrasting Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurones. J. Physiol. 1998;512:365–376. PubMed PMC
DRUKARCH B., SCHEPENS E., STOOF J.C. Muscarinic receptor activation attenuates D2 dopamine receptor mediated inhibition of acetylcholine release in rat striatum: indications for a common signal transduction pathway. Neuroscience. 1990;37:1–9. PubMed
DUNLAP K., LUEBKE J.I., TURNER T.J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci. 1995;18:89–98. PubMed
HAYDON P.G., TRUDEAU L.-G. Regulatory roles for GTP-binding proteins in nerve terminals. Seminars Neurosci. 1998;9:220–231.
HERLITZE S., GARCIA D.E., MACKIE K., HILLE B., SCHEUER T., CATTERALL W.A. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature. 1996;380:258–262. PubMed
HILLYARD D.R., MONJE V.D., MINTZ I.M., BEAN B.P., NADASDI L, , RAMACHANDRAN J., MILJANICH G., AZIMI ZOONOOZ A., MCINTOSH J.M., CRUZ L.J., IMPERIAL J.S., OLIVERA B.M. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron. 1992;9:69–77. PubMed
IKEDA S.R. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature. 1996;380:255–258. PubMed
KATZ E., PROTTI D.A., FERRO P.A., SIRI M.D.R., UCHITEL O.D. Effects of Ca2+ channel blocker neurotoxins on transmitter release and presynaptic currents at the mouse neuromuscular junction. Br. J. Pharmacol. 1997;121:1531–1540. PubMed PMC
KAZDA S., KNORR A.Calcium antagonists Handbook of Experimental Pharmacology, Vol. 93, Pharmacology of Antihypertensive Therapeutics 1990Berlin: Springer-Verlag; 301–375.ed. Ganten D. & Mulrow P.J. pp
KOH D.S., HILLE B. Modulation by neurotransmitters of catecholamine secretion from sympathetic ganglion neurons detected by amperometry. Proc. Natl. Acad. Sci. U.S.A. 1997;94:1506–1511. PubMed PMC
LEVEQUE C., EL FAR O., MARTIN-MOUTOT N., SATO K., KATO R., TAKAHASHI M., SEAGAR M.J. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J. Biol. Chem. 1994;269:6306–6312. PubMed
LUEBKE J.I., DUNLAP K., TURNER T.J. Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron. 1993;11:895–902. PubMed
MCDONOUGH S.I., SWARTZ K.J., MINTZ I.M., BOLAND L.M., BEAN B.P. Inhibition of calcium channels in rat central and peripheral neurons by omega-conotoxin MVIIC. J. Neurosci. 1996;16:2612–2623. PubMed PMC
MILJANICH G.P., RAMACHANDRAN J. Antagonists of neuronal calcium channels: Structure, function, and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 1995;35:707–734. PubMed
MILLER R.J. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 1998;38:201–227. PubMed
MINTZ I.M., ADAMS M.E., BEAN B.P. P-type calcium channels in rat central and peripheral neurons. Neuron. 1992;9:85–95. PubMed
MOCHIDA S., SHENG Z.H., BAKER C., KOBAYASHI H., CATTERALL W.A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron. 1996;17:781–788. PubMed
OLIVERA B.M., MILJANICH G.P., RAMACHANDRAN J., ADAMS M.E. Calcium channel diversity and neurotransmitter release: The omega-conotoxins and omega-agatoxins. Annu. Rev. Biochem. 1994;63:823–867. PubMed
PROTTI D.A., UCHITEL O.D. Transmitter release of presynaptic Ca2+ currents blocked by the spider toxin ω-agatoxin-IVA. Neuroreport. 1993;5:333–336. PubMed
QIAN J., SAGGAU P. Presynaptic inhibition of synaptic transmission in the rat hippocampus by activation of muscarinic receptors: involvement of presynaptic calcium influx. Brit. J. Pharmacol. 1997;122:511–519. PubMed PMC
RANDALL A., TSIEN R.W. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J. Neurosci. 1995;15:2995–3012. PubMed PMC
SATHER W.A., TANABE T., ZHANG J.-F., MORI Y., ADAMS M.E., TSIEN R.W. Distinctive biophysical and pharmacological properties of class A (B1) calcium channel alpha1 subunits. Neuron. 1993;11:291–303. PubMed
SMITH A.B., CUNNANE T.C. Multiple calcium channels control neurotransmitter release from rat postganglionic sympathetic nerve terminals. J. Physiol. London. 1997;499:341–349. PubMed PMC
STANLEY E.E. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 1997;20:404–409. PubMed
TAREILUS E., BREER H. Presynaptic calcium channels: Pharmacology and regulation. Neurochem. Int. 1995;26:539–558. PubMed
TURNER T.J., ADAMS M.E., DUNLAP K. Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release. Proc. Natl. Acad. Sci. U.S.A. 1993;90:9518–9522. PubMed PMC
UCHITEL O.D. Toxins affecting calcium channels in neurons. Toxicon. 1997;35:1161–1191. PubMed
WESSLER I., DOOLEY D.J., WERHAND J., SCHLEMMER F. Differential effects of calcium channel antagonists (gamma-conotoxin GVIA, nifedipine, verapamil) on the electrically-evoked release of [3H]acetylcholine from the myenteric plexus, phrenic nerve and neocortex of rats. Naunyn-Schmiedeberg's Arch. Pharmacol. 1990;341:288–294. PubMed
WILLIAMS M.E., FELDMAN D.H., MCCUE A.F., BRENNER R., VELICELEBI G, , ELLIS S.B., HARPOLD M.M. Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron. 1992;8:71–84. PubMed
WU L.-G., SAGGAU P. Pharmacological identification of two types of presynaptic voltage-dependent calcium channels at CA3-CA1 synapses of the hippocampus. J. Neurosci. 1994a;14:5613–5622. PubMed PMC
WU L.-G., SAGGAU P. Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron. 1994b;12:1139–1148. PubMed
WU L.-G., SAGGAU P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 1997;20:204–212. PubMed
WU L.-G., WESTENBROEK R.E., BORST J.G.G., CATTERALL W.A., SAKMANN B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses. J. Neurosci. 1999;19:726–736. PubMed PMC
YAN Z., SONG W.J., SURMEIER J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J. Neurophysiol. 1997;77:1003–1015. PubMed
YAN Z., SURMEIER D.J. Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. J. Neurosci. 1996;16:2592–2604. PubMed PMC