Prediction of chiral separations using a combination of experimental design and artificial neural networks

. 1999 ; 11 (8) : 616-21.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid10467312
Odkazy

PubMed 10467312
DOI 10.1002/(sici)1520-636x(1999)11:8<616::aid-chir2>3.0.co;2-r
PII: 10.1002/(SICI)1520-636X(1999)11:8<616::AID-CHIR2>3.0.CO;2-R
Knihovny.cz E-zdroje

In this work the advantages of using artificial neural networks (ANNs) combined with experimental design (ED) to optimize the separation of amino acids enantiomers, with alpha-cyclodextrin as chiral selector, were demonstrated. The results obtained with the ED-ANN approach were compared with those of either the partial least-squares (PLS) method or the response surface methodology where experimental design and the regression equation were used. The ANN approach is quite general, no explicit model is needed, and the amount of experimental work can be decreased considerably.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...