Influence of the bcg locus on natural resistance to primary infection with the facultative intracellular bacterium Francisella tularensis in mice
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10678963
PubMed Central
PMC97304
DOI
10.1128/iai.68.3.1480-1484.2000
Knihovny.cz E-zdroje
- MeSH
- cytokiny biosyntéza MeSH
- dusitany metabolismus MeSH
- kultivované buňky MeSH
- mapování chromozomů * MeSH
- membránové proteiny genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přirozená imunita MeSH
- proteiny přenášející kationty * MeSH
- reaktivní formy kyslíku MeSH
- slezina mikrobiologie MeSH
- transportní proteiny genetika MeSH
- tularemie imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokiny MeSH
- dusitany MeSH
- membránové proteiny MeSH
- natural resistance-associated macrophage protein 1 MeSH Prohlížeč
- proteiny přenášející kationty * MeSH
- reaktivní formy kyslíku MeSH
- transportní proteiny MeSH
The implication of the Bcg locus in the control of natural resistance to infection with a live vaccine strain (LVS) of the intracellular pathogen Francisella tularensis was studied. Analysis of phenotypic expression of natural resistance and susceptibility was performed using mouse strains congenic at the Bcg locus. Comparison of the kinetics of bacterial colonization of spleen showed that B10.A.Bcg(r) mice were extremely susceptible during early phases of primary sublethal infection, while their congenic C57BL/10N [Bcg(s)] counterparts could be classified as resistant to F. tularensis LVS infection according to the 2-log-lower bacterial CFU within the tissue as long as 5 days after infection. Different phenotypes of Bcg congenic mice were associated with differential expression of the cytokines tumor necrosis factor alpha, interleukin-10, and gamma interferon and production of reactive oxygen intermediates. These results strongly suggest that the Bcg locus, which is close or identical to the Nramp1 gene, controls natural resistance to infection by F. tularensis and that its effect is the opposite of that observed for other Bcg-controlled pathogens.
Zobrazit více v PubMed
Agranoff D, Krishna S. Metal ion homeostasis and intracellular parasitism. Mol Microbiol. 1998;28:403–412. PubMed
Anthony L S D, Kongshavn P A L. Experimental murine tularemia caused by Francisella tularensis, live vaccine strain: a model of acquired cellular resistance. Microb Pathog. 1987;2:3–14. PubMed
Anthony L S D, Skamene E, Kongshavn P A L. Influence of genetic background on host resistance to experimental murine tularemia. Infect Immun. 1988;56:2089–2093. PubMed PMC
Atkinson P G, Barton C H. High level expression of Nramp1G169 in RAW264.7 cell transfectants: analysis of intracellular iron transport. Immunology. 1999;96:656–662. PubMed PMC
Blackwell J M, Roach T I, Atkinson P G, Ajioka J W, Barton C H, Shaw M A. Genetic regulation of macrophage priming/activation: the Lsh gene story. Immunol Lett. 1991;30:241–248. PubMed
Blackwell J M, Barton C H, White J K, Roach T L, Shaw M A, Whitehead S H, Mock B A, Searle S, Williams H, Baker A M. Genetic regulation of leishmanial and mycobacterial infections: the Lsh/Ity/Bcg gene story continues. Immunol Lett. 1994;43:99–107. PubMed
Blackwell J M, Searle S. Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg) Immunol Lett. 1999;65:73–80. PubMed
Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P. Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA. 1995;92:10089–10093. PubMed PMC
Conlan J W, Sjöstedt A, North R J. CD4+ and CD8+ T-cell-dependent and -independent host defense mechanisms can operate to control and resolve primary and secondary Francisella tularensis LVS infection in mice. Infect Immun. 1994;62:5603–5607. PubMed PMC
Culkin S J, Rheinehart-Jones T, Elkins K L. A novel role for B cells in early protective immunity to an intracellular pathogen, Francisella tularensis strain LVS. J Immunol. 1997;158:3272–3284. PubMed
Denis M, Forget A, Pelletier M, Skamene E. Pleiotropic effects of the Bcg gene. I. Antigen presentation in genetically susceptible and resistant congenic mouse strains. J Immunol. 1988;140:2395–2400. PubMed
Fearon D T, Locksley R M. The instructive role of innate immunity in the acquired immune response. Science. 1996;272:50–54. PubMed
Forget A, Skamene E, Gros P, Miailhe A C, Turcotte R. Differences in response among inbred mouse strains to infection with small doses of Mycobacterium bovis BCG. Infect Immun. 1981;32:42–47. PubMed PMC
Fortier A H, Slater M V, Ziemba R, Meltzer M S, Nacy C A. Live vaccine strain of Francisella tularensis: infection and immunity in mice. Infect Immun. 1991;59:2922–2928. PubMed PMC
Fortier A H, Polsinelli T, Green S J, Nacy C A. Activation of macrophages for destruction of Francisella tularensis: identification of cytokines, effector cells, and effector molecules. Infect Immun. 1992;60:817–825. PubMed PMC
Fortier A H, Green S J, Polsinelli T, Jones T R, Crawford R M, Lieby D A, Elkins K L, Meltzer M S, Nacy C A. Life and death of an intracellular pathogen: Francisella tularensis and the macrophage. In: Zwilling B S, Eisenstein T K, editors. Macrophage-pathogen interactions. New York, N.Y: Marcel Dekker Inc.; 1994. pp. 349–363. PubMed
Fortier A H, Leiby D A, Narayan R B, Asafoadjei E, Crawford R M, Nacy C A, Meltzer M S. Growth of Francisella tularensis LVS in macrophages: the acidic intracellular compartment provides essential iron required for growth. Infect Immun. 1995;63:1478–1483. PubMed PMC
Golovliov I, Sandström G, Ericsson M, Sjöstedt A, Tärnvik A. Cytokine expression in the liver during the early phase of murine tularemia. Infect Immun. 1995;63:534–538. PubMed PMC
Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P. The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1Gly169 allele. Infect Immun. 1996;64:2923–2929. PubMed PMC
Green L C, Wagner D A, Glogowski J, Skipper P I, Whisnok J S, Tannenbaum S R. Analysis of nitrite, nitrate and [15]N nitrite in biological fluids. Anal Biochem. 1989;126:131–138. PubMed
Gros P, Skamene E, Forget A. Genetic control of natural resistance to Mycobacterium bovis (BCG) in mice. J Immunol. 1981;127:2417–2421. PubMed
Hackam D J, Rotstein O D, Zhang W, Gruenheid S, Gros P, Grinstein S. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J Exp Med. 1998;188:351–364. PubMed PMC
Hernychová L, Kovářová H, Macela A, Kroča M, Kročová Z, Stulík J. Early consequences of macrophage-Francisella tularensis interaction under the influence of different genetic background in mice. Immunol Lett. 1997;57:75–81. PubMed
Kovářová H, Macela A, Stulík J, Propper P, Ledvina M. The role of phagocytes and specific antibodies in gamma irradiated mice infected by intracellular pathogen. Stud Biophys. 1987;121:173–182.
Kovářová H, Macela A, Stulik J. Macrophage activating factors produced in the course of murine tularemia: effect on multiplication of microbes. Arch Immunol Therap Exp. 1992;40:183–190. PubMed
Kovářová H, Radzioch D, Hajdúch M, Šírová M, Bláha V, Macela A, Stulík J. Natural resistance to intracellular parasites: a study by two-dimensional gel electrophoresis coupled with multivariate analysis. Electrophoresis. 1998;19:1325–1331. PubMed
Macela A, Stulík J, Hernychová L, Kroča M, Kročová Z, Kovářová H. The immune response against Francisella tularensis live vaccine strain in Lpsn and Lpsd mice. FEMS Immunol Med Microbiol. 1996;13:235–239. PubMed
Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E, Fuks A, Bumstead N, Morgan K, Gros P. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics. 1994;23:51–61. PubMed
Searle S, Bright N A, Roach T I, Atkinson P G, Barton C H, Meloen R H, Blackwell J M. Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci. 1998;111:2855–2866. PubMed
Sjöstedt A, Tärnvik A, Sandström G. Francisella tularensis: host-parasite interaction. FEMS Immunol Med Microbiol. 1996;13:181–184. PubMed
Soo S S, Villarreal-Ramos B, Ahjam Khan C M, Hormaeche C E, Blackwell J M. Genetic control of immune response to recombinant antigens carried by an attenuated Salmonella typhimurium vaccine strain: Nramp1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun. 1998;66:1910–1917. PubMed PMC
Tärnvik A, Ericsson M, Golovliov I, Sandström G, Sjöstedt A. Orchestration of the protective immune response to intracellular bacteria: Francisella tularensis as a model organism. FEMS Immunol Med Microbiol. 1996;13:221–225. PubMed
Unanue E R. Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol Rev. 1997;158:11–15. PubMed
Vidal S M, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell. 1993;73:469–485. PubMed
Vidal S, Tremblay M L, Govoni G, Gauthier S, Sebastini G, Malo D, Skamene E, Olivier M, Jothy S, Gros P. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med. 1995;182:655–666. PubMed PMC