Cold shock in Bacillus subtilis: different effects of benzyl alcohol and ethanol on the membrane organisation and cell adaptation
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
10704916
DOI
10.1016/s0005-2736(99)00240-0
PII: S0005-2736(99)00240-0
Knihovny.cz E-zdroje
- MeSH
- anizotropie MeSH
- Bacillus subtilis účinky léků fyziologie ultrastruktura MeSH
- benzylalkohol farmakologie MeSH
- cytoplazma účinky léků metabolismus MeSH
- difenylhexatrien analogy a deriváty MeSH
- ethanol farmakologie MeSH
- fluorescenční barviva MeSH
- fyziologická adaptace účinky léků MeSH
- intracelulární membrány účinky léků metabolismus MeSH
- nenasycené mastné kyseliny metabolismus MeSH
- nízká teplota MeSH
- poločas MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene MeSH Prohlížeč
- benzylalkohol MeSH
- difenylhexatrien MeSH
- ethanol MeSH
- fluorescenční barviva MeSH
- nenasycené mastné kyseliny MeSH
A temperature shift-down of Bacillus subtilis from 40 to 20 degrees C induces an 80 min growth lag. Benzyl alcohol reduced this period to 51 min, whereas ethanol prolonged it up to 102 min. The effect of the two alcohols on the membrane state was investigated by measuring the steady-state fluorescence anisotropy and analysing the lifetime distribution of diphenylhexatriene (DPH) and its polar derivative, TMA-DPH. As followed from the fluorescence anisotropy, the two alcohols exerted similar (fluidizing) effects on the cytoplasmic membranes of B. subtilis. However, benzyl alcohol significantly shortened the main DPH lifetime component and widened its distribution, while ethanol had no effect. The benzyl alcohol activity was interpreted in terms of an increased membrane hydration due to disordering of the membrane structure. Such an effect imitates the cold shock induced synthesis of unsaturated fatty acids in B. subtilis. The fatty acid analysis revealed that ethanol hindered this adaptive synthesis of fatty acids. At the same time, its effect on the membrane state (membrane order) was very low and could not substitute the physiological response as was the case with benzyl alcohol. It can thus be concluded that the adaptation of the membrane physical state contributes significantly to the cold shock response of B. subtilis.
Citace poskytuje Crossref.org