Poly[N-(2-hydroxypropyl)methacrylamide] polymers diffuse in brain extracellular space with same tortuosity as small molecules
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.
Grant support
NS 28642
NINDS NIH HHS - United States
PubMed
11159424
PubMed Central
PMC1301255
DOI
10.1016/s0006-3495(01)76036-5
PII: S0006-3495(01)76036-5
Knihovny.cz E-resources
- MeSH
- Dextrans chemistry pharmacokinetics MeSH
- Diffusion MeSH
- Extracellular Space metabolism MeSH
- Microscopy, Fluorescence MeSH
- Rats MeSH
- Polymethacrylic Acids chemistry pharmacokinetics MeSH
- Models, Neurological MeSH
- Molecular Weight MeSH
- Neocortex metabolism MeSH
- Optics and Photonics MeSH
- Rats, Sprague-Dawley MeSH
- Serum Albumin, Bovine chemistry pharmacokinetics MeSH
- Cattle MeSH
- Drug Delivery Systems MeSH
- In Vitro Techniques MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Cattle MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Names of Substances
- Dextrans MeSH
- Duxon MeSH Browser
- Polymethacrylic Acids MeSH
- Serum Albumin, Bovine MeSH
Integrative optical imaging was used to show that long-chain synthetic poly[N-(2-hydroxypropyl)methacrylamide] (PHPMA) polymers in a range of molecular weights from 7.8 to 1057 kDa were able to diffuse through the extracellular space in rat neocortical slices. Tortuosity (square root of ratio of diffusion coefficient in aqueous medium to that in brain) measured with such polymers averaged 1.57, a value similar to that obtained previously with tetramethylammonium, a small cation. When PHPMA was conjugated with bovine serum albumin (BSA) to make a bulky polymer with molecular weight 176 kDa, the tortuosity rose to 2.27, a value similar to that obtained previously with BSA alone and with 70-kDa dextran. The method of image analysis was justified with diffusion models involving spherical and nonspherical initial distributions of the molecules.
See more in PubMed
Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8306-11 PubMed
Nature. 1953 Jan 31;171(4344):221-2 PubMed
J Physiol. 1981 Dec;321:225-57 PubMed
Brain Res. 1985 May 6;333(2):325-9 PubMed
Biophys J. 1989 Nov;56(5):995-1005 PubMed
Neuroscience. 1990;38(3):579-90 PubMed
J Neurophysiol. 1991 Feb;65(2):264-72 PubMed
Can J Physiol Pharmacol. 1992;70 Suppl:S314-22 PubMed
Biophys J. 1993 May;64(5):1638-46 PubMed
J Neurophysiol. 1993 Nov;70(5):2035-44 PubMed
Biophys J. 1993 Dec;65(6):2277-90 PubMed
J Microsc. 1995 Jun;178(Pt 3):267-71 PubMed
J Neurophysiol. 1995 Aug;74(2):565-73 PubMed
Neuroscience. 1996 Dec;75(3):839-47 PubMed
Pharm Res. 1998 Mar;15(3):377-85 PubMed
Jpn J Cancer Res. 1998 Mar;89(3):307-14 PubMed
Trends Neurosci. 1998 May;21(5):207-15 PubMed
Ann N Y Acad Sci. 1997 Dec 31;831:47-56 PubMed
Neuroreport. 1998 May 11;9(7):1299-304 PubMed
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8975-80 PubMed
J Neurophysiol. 1999 May;81(5):2501-7 PubMed
Trends Pharmacol Sci. 1999 Apr;20(4):142-50 PubMed
Biophys J. 1999 Jul;77(1):542-52 PubMed
Biophys J. 1975 Feb;15(2 Pt 1):137-41 PubMed
Diffusion in brain extracellular space