Molecular dynamics of a grid-mounted molecular dipolar rotor in a rotating electric field

. 2001 May 08 ; 98 (10) : 5481-6. [epub] 20010501

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid11331744

Classical molecular dynamics is applied to the rotation of a dipolar molecular rotor mounted on a square grid and driven by rotating electric field E(nu) at T approximately 150 K. The rotor is a complex of Re with two substituted o-phenanthrolines, one positively and one negatively charged, attached to an axial position of Rh(2)(4+) in a [2]staffanedicarboxylate grid through 2-(3-cyanobicyclo[1.1.1]pent-1-yl)malonic dialdehyde. Four regimes are characterized by a, the average lag per turn: (i) synchronous (a < 1/e) at E(nu) = /E(nu)/ > E(c)(nu) [E(c)(nu) is the critical field strength], (ii) asynchronous (1/e < a < 1) at E(c)(nu) > E(nu) > E(bo)(nu) > kT/mu;, [E(bo)(nu) is the break-off field strength], (iii) random driven (a approximately 1) at E(bo)(nu) > E(nu) > kT/mu, and (iv) random thermal (a approximately 1) at kT/mu > E(nu). A fifth regime, (v) strongly hindered, W > kT, E(mu), (W is the rotational barrier), has not been examined. We find E(bo)(nu)/kVcm(-1) approximately (kT/(mu))/kVcm(-1) + 0.13(nu/GHz)(1.9) and E(c)(nu)/kVcm(-1) approximately (2.3kT/(mu))/kVcm(-1) + 0.87(nu/GHz)(1.6). For nu > 40 GHz, the rotor behaves as a macroscopic body with a friction constant proportional to frequency, eta/eVps approximately 1.14 nu/THz, and for nu < 20 GHz, it exhibits a uniquely molecular behavior.

Zobrazit více v PubMed

Kaszynski P, Michl J. J Am Chem Soc. 1988;110:5225–5226.

Michl J, Kaszynski P, Friedli A C, Murthy G S, Yang H-C, Robinson R E, McMurdie N D, Kim T. In: Strain and Its Implications in Organic Chemistry. de Meijere A, Blechert S, editors. Dordrecht, The Netherlands: Kluwer; 1989. , NATO Advanced Science Institutes Series, Vol. 273, p. 463–482.

Magnera T F, Peslherbe L M, Körblová E, Michl J. J Organomet Chem. 1997;548:83–89.

Kaszynski P, Friedli A C, Michl J. J Am Chem Soc. 1992;114:601–620.

Magnera T F, Pecka J, Vacek J, Michl J. In: Nanostructural Materials: Clusters, Composites, and Thin Films. Moskovits M, Shalaev V, editors. Washington, DC: Am. Chem. Soc.; 1997. , ACS Symposium Series 679, pp. 213–220.

Magnera T F, Pecka J, Michl J. In: Science and Technology of Polymers and Advanced Materials. Prasad P N, Mark J E, Kandil S H, Kafafi Z H, editors. New York: Plenum; 1998. pp. 385–391.

Harrison R M, Magnera T F, Vacek J, Michl J. In: Modular Chemistry. Michl J, editor. Dordrecht, The Netherlands: Kluwer; 1997. pp. 1–16.

Koumura N, Zijlstra R W J, van Delden R A, Harada N, Feringa B L. Nature (London) 1999;401:152–155. PubMed

Bedard T C, Moore J S. J Am Chem Soc. 1995;117:10662–10671.

Kelly T R, Tellitu I, Sestelo J P. Angew Chem Int Ed Engl. 1997;36:1866–1868.

Gimzewski J K, Joachim C, Schlittler R R, Langlais V, Tang H, Johannsen I. Science. 1998;281:531–533. PubMed

Clayden J, Pink J H. Angew Chem Int Ed Engl. 1998;37:1937–1939.

Balzani V, Gómez-López M, Stoddart J F. Acc Chem Res. 1998;31:405–414.

Sauvage J P. Acc Chem Res. 1998;31:611–619.

Bermudez V, Capron N, Gase T, Gatti F G, Kajzar F, Leigh D A, Zerbetto F, Zhang S. Nature (London) 2000;406:608–611. PubMed

Villeneuve D M, Aseyev S A, Dietrich P, Spanner M, Ivanov M Y, Corkum P B. Phys Rev Lett. 2000;85:542–545. PubMed

Rozenbaum V M, Ogenko V M, Chuiko A A. Sov Phys Usp. 1991;34:883–902.

Noji H, Yasuda R, Yoshida M, Kinoshita K., Jr Nature (London) 1997;386:299–302. PubMed

Baranova N B, Zel'dovich B Y. Chem Phys Lett. 1978;57:435–437.

Space B, Rabitz H, Lörincz A, Moore P. J Chem Phys. 1996;105:9515–9524.

Astumian R D. Science. 1997;276:917–922. PubMed

Vacek J, Michl J. New J Chem. 1997;21:1259–1268.

Zorski H, Infeld E. Phys Rev Lett. 1992;68:1180–1183. PubMed

DeLeeuw S W, Solvaeson D, Ratner M A, Michl J. J Phys Chem B. 1998;102:3876–3885.

Sim E, Ratner M A, de Leeuw S W. J Phys Chem B. 1999;103:8663–8670.

Marinari, E., Parisi, G. & Ruiz-Lorenzo, J. (1997) http://xxx.lanl.gov/abs/cond-mat/9701016. PubMed

Tuzun R D, Noid D W, Sumpter B G. Nanotechnology. 1995;6:52–63.

Sohlberg K, Tuzun R E, Sumpter B G, Noid D W. Nanotechnology. 1997;8:103–111.

Rappé A K, Casewit C J, Colwell K S, Goddard W A, III, Skiff W M. J Am Chem Soc. 1992;114:10024–10035.

Rappé A K, Goddard W A., III J Phys Chem. 1991;95:3358–3363.

Dunbar K R. J Am Chem Soc. 1988;110:8247–8249.

Cotton F A, Walton R A. Multiple Bonds Between Metal Atoms. 2nd Ed. Oxford: Clarendon; 1993. pp. 431–501.

Dennis J E, Gay D M, Welsch R E. Acm Trans Math Software. 1981;7:348–369.

Madura J D, Briggs J M, Wade R C, Gabdoulline R R. In: Encyclopedia of Computational Chemistry. Schleyer P v R, Allinger N L, Clark T, Gasteiger J, Kollman P A, Schaefer H F, III, Schreiner P R., editors. Vol. 1. Chichester, United Kingdom: Wiley; 1998. pp. 141–154.

Barone A, Paternò G. Physics and Applications of the Josephson Effect. New York: Wiley; 1982.

Kurkijärvi J, Ambegaokar V. Phys Lett A. 1970;31:314–315.

Falco C M, Parker W H, Trullinger S E, Hansma P K. Phys Rev B. 1974;10:1865–1873.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...