Phenolic acids reduce the genotoxicity of acridine orange and ofloxacin in Salmonella typhimurium
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
11898340
DOI
10.1007/bf02817994
Knihovny.cz E-resources
- MeSH
- Acridine Orange toxicity MeSH
- Antimutagenic Agents pharmacology MeSH
- Gentisates * MeSH
- Hydroxybenzoates pharmacology MeSH
- Caffeic Acids pharmacology MeSH
- Coumaric Acids pharmacology MeSH
- Mutagens toxicity MeSH
- Ofloxacin toxicity MeSH
- Propionates MeSH
- Salmonella typhimurium drug effects genetics MeSH
- Mutagenicity Tests MeSH
- Dose-Response Relationship, Drug MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2,5-dihydroxybenzoic acid MeSH Browser
- Acridine Orange MeSH
- Antimutagenic Agents MeSH
- caffeic acid MeSH Browser
- ferulic acid MeSH Browser
- Gentisates * MeSH
- Hydroxybenzoates MeSH
- Caffeic Acids MeSH
- Coumaric Acids MeSH
- Mutagens MeSH
- Ofloxacin MeSH
- p-coumaric acid MeSH Browser
- phenolic acid MeSH Browser
- Propionates MeSH
Naturally occurring plant phenolics, p-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA) and gentisic acid (GA) (25-100 nmol/L) had protective effects on acridine orange (AO; 216 mumol/L)- and ofloxacin (3 mumol/L)-induced genotoxicity in Salmonella typhimurium. FA, GA and CA exhibited a significant concentration-dependent protective effect against the genotoxicity of AO and ofloxacin, with the exception of PA, which at all concentrations tested abolished the AO and ofloxacin genotoxicity. UV spectrophotometric measurements showed the interaction of PA, FA, GA and CA with AO but not with ofloxacin; this interaction is obviously responsible for the reduction of AO-induced S. typhimurium mutagenicity. In the case of ofloxacin the antimutagenic effect of PA, FA, GA and CA is assumed to be a result of their ability to scavenge reactive oxygen species (ROS) produced by ofloxacin.
See more in PubMed
Free Radic Biol Med. 1999 May;26(9-10):1253-60 PubMed
Br J Pharmacol. 1998 Feb;123(3):565-73 PubMed
Cancer Res. 1993 Jun 15;53(12):2775-9 PubMed
Carcinogenesis. 1993 Jul;14(7):1321-5 PubMed
Crit Rev Food Sci Nutr. 1992;32(1):67-103 PubMed
Free Radic Biol Med. 1993 Aug;15(2):217-22 PubMed
Biochim Biophys Acta. 1984 Jan 17;792(1):92-7 PubMed
Folia Microbiol (Praha). 1999;44(5):513-8 PubMed
Arch Biochem Biophys. 1997 Jun 15;342(2):275-81 PubMed
Mutat Res. 2000 Aug 21;469(1):107-14 PubMed
Biochem Pharmacol. 1994 Aug 3;48(3):487-94 PubMed
Biochem Pharmacol. 1991 Aug 22;42(6):1177-9 PubMed
Biochem Pharmacol. 1992 Jan 22;43(2):147-52 PubMed
Mutat Res. 1983 May;113(3-4):173-215 PubMed
Mutat Res. 1996 Feb 29;359(2):85-93 PubMed
Mutat Res. 1998 Aug 7;416(1-2):85-92 PubMed
Arch Biochem Biophys. 1995 Nov 10;323(2):373-81 PubMed
Biosci Biotechnol Biochem. 1993 Jan;57(7):1204-5 PubMed