DNA bending and unwinding due to the major 1,2-GG intrastrand cross-link formed by antitumor cis-diamminedichloroplatinum(II) are flanking-base independent
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12087174
PubMed Central
PMC117060
DOI
10.1093/nar/gkf405
Knihovny.cz E-zdroje
- MeSH
- adukty DNA * MeSH
- cisplatina chemie farmakologie MeSH
- DNA chemie genetika MeSH
- guanosin chemie MeSH
- konformace nukleové kyseliny účinky léků MeSH
- oligonukleotidy chemie genetika MeSH
- protinádorové látky chemie farmakologie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adukty DNA * MeSH
- cisplatina MeSH
- DNA MeSH
- guanosin MeSH
- oligonukleotidy MeSH
- protinádorové látky MeSH
Antitumor cisplatin [cis-diamminedichloroplatinum(II)] forms on DNA predominantly intrastrand cross-links between neighboring purine residues. Several discoveries suggested that the toxicity of cisplatin originated from these lesions. The formation of 1,2-GG intrastrand cross-link of cisplatin leads to marked conformational alterations in DNA including a directional, rigid bend toward the major groove and local unwinding. These altered structures attract various cellular proteins. This phenomenon has been postulated to mediate antitumor properties of cisplatin. Importantly, the binding affinity of several proteins that specifically recognize 1,2-GG intrastrand cross-link to platinated DNA is modulated by the nature of the base pairs that immediately flank the platinated d(GpG) site. However, the influence of sequence context on DNA bending and unwinding due to the formation of the 1,2-GG intrastrand cross-link has not been extensively investigated. In the present study we have employed electrophoretic retardation (phasing) assay to analyze bending and unwinding induced by the single, site-specific 1,2-GG intrastrand cross-link immediately flanked by various bases formed by cisplatin in nine oligodeoxyribonucleotide duplexes. The results indicate that bending and unwinding of DNA as a consequence of the formation of the major adduct of cisplatin is, in the first approximation, independent of the base pairs flanking the platinated d(GpG) site.
Zobrazit více v PubMed
Johnson N.P., Butour,J.-L., Villani,G., Wimmer,F.L., Defais,M., Pierson,V. and Brabec,V. (1989) Metal antitumor compounds: the mechanism of action of platinum complexes. Prog. Clin. Biochem. Med., 10, 1–24.
Reedijk J. and Teuben,J.M. (1999) Platinum-sulfur interactions involved in antitumor drugs, rescue agents and biomolecules. In Lippert,B. (ed.), Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug. Wiley-VCH, Weinheim, Germany, pp. 339–362.
Eastman A. (1987) The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol. Ther., 34, 155–166. PubMed
Fichtinger-Schepman A.M.J., Van der Veer,J.L., Den Hartog,J.H.J., Lohman,P.H.M. and Reedijk,J. (1985) Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification and quantitation. Biochemistry, 24, 707–713. PubMed
van de Vaart P.J.M., Belderbos,J., de Jong,D., Sneeuw,K.C.A., Majoor,D., Bartelink,H. and Begg,A.C. (2000) DNA-adduct levels as a predictor of outcome for NSCLC patients receiving daily cisplatin and radiotherapy. Int. J. Cancer, 89, 160–166. PubMed
Leng M. and Brabec,V. (1994) DNA adducts of cisplatin, transplatin and platinum-intercalating drugs. In Hemminki,K., Dipple,A., Shuker,D.E.G., Kadlubar,F.F., Segerbäck,D. and Bartsch,H. (eds), DNA Adducts: Identification and Biological Significance. IARC Scientific Publications, No. 125, International Agency for Research on Cancer, Lyon, France, pp. 339–348. PubMed
Brabec V. (2000) Chemistry and structural biology of 1,2-interstrand adducts of cisplatin. In Kelland,L.R. and Farrell,N.P. (eds), Platinum-Based Drugs in Cancer Therapy. Humana Press Inc., Totowa, NJ, pp. 37–61.
Jamieson E.R. and Lippard,S.J. (1999) Structure, recognition and processing of cisplatin-DNA adducts. Chem. Rev., 99, 2467–2498. PubMed
Gelasco A. and Lippard,S.J. (1999) Anticancer activity of cisplatin and related complexes. In Clarke,M.J. and Sadler,P.J. (eds), Metallopharmaceuticals I. DNA Interactions. Springer, Berlin, Germany, pp. 1–43.
Zlatanova J., Yaneva,J. and Leuba,S.H. (1998) Proteins that specifically recognize cisplatin-damaged DNA: a clue to anticancer activity of cisplatin. FASEB J., 12, 791–799. PubMed
Ohndorf U.M., Rould,M.A., He,Q., Pabo,C.O. and Lippard,S.J. (1999) Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature, 399, 708–712. PubMed
Zamble D.B. and Lippard,S.J. (1999) The response of cellular proteins to cisplatin-damaged DNA. In Lippert,B. (ed.), Cisplatin. Chemistry and Biochemistry of a Leading Anticancer Drug. Wiley-VCH, Weinheim, Germany, pp. 73–110.
Kartalou M. and Essigmann,J.M. (2001) Recognition of cisplatin adducts by cellular proteins. Mutat. Res., 478, 1–21. PubMed
Dunham S.U. and Lippard,S.J. (1997) DNA sequence context and protein composition modulate HMG-domain protein recognition of ciplatin-modified DNA. Biochemistry, 36, 11428–11436. PubMed
Cohen S.M., Mikata,Y., He,Q. and Lippard,S.J. (2000) HMG-domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purine-rich sequence contexts. Biochemistry, 39, 11771–11776. PubMed
Wei M., Cohen,S.M., Silverman,A.P. and Lippard,S.J. (2001) Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. J. Biol. Chem., 276, 38774–38780. PubMed
Burstyn J.N., HeigerBernays,W.J., Cohen,S.M. and Lippard,S.J. (2000) Formation of cis-diamminedichloroplatinum(II) 1,2-intrastrand cross-links on DNA is flanking-sequence independent. Nucleic Acids Res., 28, 4237–4243. PubMed PMC
Brabec V., Reedijk,J. and Leng,M. (1992) Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry, 31, 12397–12402. PubMed
Lemaire M.A., Schwartz,A., Rahmouni,A.R. and Leng,M. (1991) Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum(II) and DNA. Proc. Natl Acad. Sci. USA, 88, 1982–1985. PubMed PMC
Brabec V. and Leng,M. (1993) DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl Acad. Sci. USA, 90, 5345–5349. PubMed PMC
Maxam A.M. and Gilbert,W. (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol., 65, 499–560. PubMed
Koo H.S., Wu,H.M. and Crothers,D.M. (1986) DNA bending at adenine.thymine tracts. Nature, 320, 501–506. PubMed
Bellon S.F. and Lippard,S.J. (1990) Bending studies of DNA site-specifically modified by cisplatin, trans-diamminedichloroplatinum(II) and cis-Pt(NH3)2(N3-cytosine)Cl+. Biophys. Chem., 35, 179–188. PubMed
Koo H.S. and Crothers,D.M. (1988) Calibration of DNA curvature and a unified description of sequence-directed bending. Proc. Natl Acad. Sci. USA, 85, 1763–1767. PubMed PMC
Rice J.A., Crothers,D.M., Pinto,A.L. and Lippard,S.J. (1988) The major adduct of the antitumor drug cis-diamminedichloroplatinum(II) with DNA bends the duplex by 40° toward the major groove. Proc. Natl Acad. Sci. USA, 85, 4158–4161. PubMed PMC
Leng M. (1990) DNA bending induced by covalently bound drugs. Gel electrophoresis and chemical probe studies. Biophys. Chem., 35, 155–163. PubMed
Brabec V., Sip,M. and Leng,M. (1993) DNA conformational distortion produced by site-specific interstrand cross-link of trans-diamminedichloroplatinum(II). Biochemistry, 32, 11676–11681. PubMed
Huang H.F., Zhu,L.M., Reid,B.R., Drobny,G.P. and Hopkins,P.B. (1995) Solution structure of a cisplatin-induced DNA interstrand cross-link. Science, 270, 1842–1845. PubMed
Malinge J.M., Perez,C. and Leng,M. (1994) Base sequence-independent distorsions induced by interstrand cross-links in cis-diaminedichloroplatinum (II)-modified DNA. Nucleic Acids Res., 22, 3834–3839. PubMed PMC
Kasparkova J., Mellish,K.J., Qu,Y., Brabec,V. and Farrell,N. (1996) Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Biochemistry, 35, 16705–16713. PubMed
Bellon S.F., Coleman,J.H. and Lippard,S.J. (1991) DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II). Biochemistry, 30, 8026–8035. PubMed
Wang J.C. (1979) Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA, 76, 200–203. PubMed PMC
Rhodes D. and Klug,A. (1980) Helical periodicity of DNA determined by enzyme digestion. Nature, 286, 573–578. PubMed
Zinkel S. and Crothers,D.M. (1987) DNA bend direction by phase sensitive detection. Nature, 328, 178–181. PubMed
Koo H.S., Drak,J., Rice,J.A. and Crothers,D.M. (1990) Determination of the extent of DNA bending by an adenine thymine tract. Biochemistry, 29, 4227–4234. PubMed
Ulanovsky L., Bodner,M., Trifonov,E.N. and Choder,M. (1986) Curved DNA: design, synthesis and circularization. Proc. Natl Acad. Sci. USA, 83, 862–866. PubMed PMC
Jordan P. and Carmo-Fonseca,M. (2000) Molecular mechanisms involved in cisplatin cytotoxicity. Cell. Mol. Life Sci., 57, 1229–1235. PubMed PMC
Cohen S.M. and Lippard,S.J. (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol., 67, 93–130. PubMed
Brabec V. (2002) DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog. Nucleic Acid Res. Mol. Biol., 71, 1–68. PubMed
Orphanides G., Lagrange,T. and Reinberg,D. (1996) The general transcription factors of RNA polymerase II. Genes Dev., 10, 2657–2683. PubMed
Vichi P., Coin,F., Renaud,J.P., Vermeulen,W., Hoeijmakers,J.H.J., Moras,D. and Egly,J.M. (1997) Cisplatin- and UV-damaged DNA lure the basal transcription factor TFIID/TBP. EMBO J., 16, 7444–7456. PubMed PMC
Coin F., Frit,P., Viollet,B., Salles,B. and Egly,J.M. (1998) TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease. Mol. Cell. Biol., 18, 3907–3914. PubMed PMC
Poklar N., Pilch,D.S., Lippard,S.J., Redding,E.A., Dunham,S.U. and Breslauer,K.J. (1996) Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability and energetics of a 20-mer DNA duplex. Proc. Natl Acad. Sci. USA, 93, 7606–7611. PubMed PMC
Pilch D.S., Dunham,S.U., Jamieson,E.R., Lippard,S.J. and Breslauer,K.J. (2000) DNA sequence context modulates the impact of a cisplatin 1,2-d(GpG) intrastrand cross-link on the conformational and thermodynamic properties of duplex DNA. J. Mol. Biol., 296, 803–812. PubMed
Hofr C., Farrell,N. and Brabec,V. (2001) Thermodynamic properties of duplex DNA containing a site-specific d(GpG) intrastrand crosslink formed by an antitumor dinuclear platinum complex. Nucleic Acids Res., 29, 2034–2040. PubMed PMC
Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog