Identification of the EcoKI and EcoR124I Type I restriction--modification enzyme subunits by non-equilibrium pH gradient two-dimensional gel electrophoresis
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
12630312
DOI
10.1007/bf02818664
Knihovny.cz E-resources
- MeSH
- Electrophoresis, Gel, Two-Dimensional MeSH
- DNA Restriction-Modification Enzymes chemistry MeSH
- Escherichia coli enzymology MeSH
- Isoelectric Point MeSH
- Site-Specific DNA-Methyltransferase (Adenine-Specific) chemistry MeSH
- Molecular Weight MeSH
- Deoxyribonucleases, Type I Site-Specific chemistry MeSH
- DNA Restriction Enzymes chemistry MeSH
- Blotting, Western MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA modification methylase EcoKI MeSH Browser
- DNA Restriction-Modification Enzymes MeSH
- EcoR124 modification methylase type I MeSH Browser
- endodeoxyribonuclease EcoKI MeSH Browser
- endodeoxyribonuclease EcoR124I MeSH Browser
- Site-Specific DNA-Methyltransferase (Adenine-Specific) MeSH
- Deoxyribonucleases, Type I Site-Specific MeSH
- DNA Restriction Enzymes MeSH
Effectively optimized and reproducible procedure for monitoring the composition of type I restriction-modification endonucleases EcoKI and EcoR124I by non-equilibrium pH gradient two-dimensional (2-D) gel electrophoresis is described. Three subunits of the enzyme complex, which widely differ from one another in their isoelectric points and molar mass, were identified in crude cell extracts of E. coli. For the first time all three subunits of both EcoKI and EcoR124I were detected as distinct spots on a single 2-D gel. A sensitive immunoblotting procedure was suggested suitable for routine use in determining the identity of individual subunits. Potential application of this method for detailed studies of regulation of the function and stoichiometry of the enzyme complexes is discussed.
See more in PubMed
Mol Microbiol. 1996;22(3):437-447 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Electrophoresis. 1994 Aug-Sep;15(8-9):1198-204 PubMed
Mol Microbiol. 1998 Mar;27(6):1091-8 PubMed
Microbiol Mol Biol Rev. 2000 Jun;64(2):412-34 PubMed
Plasmid. 1985 Nov;14(3):224-34 PubMed
Mol Gen Genet. 1993 Dec;241(5-6):491-6 PubMed
Methods Mol Biol. 1999;112:129-31 PubMed
J Mol Biol. 1970 May 28;50(1):111-27 PubMed
Electrophoresis. 1992 Jul;13(7):429-39 PubMed
Nucleic Acids Res. 1992 Jan 25;20(2):179-86 PubMed
J Biol Chem. 1975 May 25;250(10):4007-21 PubMed
Cell. 1977 Dec;12(4):1133-41 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Nucleic Acids Res. 1998 Oct 1;26(19):4439-45 PubMed
Gene. 1985;33(1):103-19 PubMed
Genetics. 1995 Aug;140(4):1187-97 PubMed
Nature. 1997 Aug 7;388(6642):539-47 PubMed
Genetics. 1954 Jul;39(4):440-52 PubMed
Eur J Biochem. 1982 Dec;129(1):127-32 PubMed
Nucleic Acids Res. 1993 Feb 11;21(3):373-9 PubMed
Curr Opin Genet Dev. 1999 Dec;9(6):649-56 PubMed
Electrophoresis. 1997 May;18(5):799-801 PubMed
Gene. 1992 Mar 1;112(1):21-7 PubMed
Mol Microbiol. 1994 May;12(4):547-60 PubMed
J Mol Biol. 1996 Apr 12;257(4):790-803 PubMed