Dynamics of endogenous cytokinin pools in tobacco seedlings: a modelling approach
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
12646503
PubMed Central
PMC4242250
DOI
10.1093/aob/mcg061
Knihovny.cz E-zdroje
- MeSH
- adenin analogy a deriváty farmakologie MeSH
- biologické modely MeSH
- cytokininy analýza metabolismus MeSH
- fenotyp MeSH
- metoda Monte Carlo MeSH
- semenáček účinky léků růst a vývoj metabolismus MeSH
- tabák účinky léků růst a vývoj metabolismus MeSH
- zeatin analogy a deriváty farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenin MeSH
- cytokininy MeSH
- zeatin MeSH
Recent advances in cytokinin analysis have made it possible to measure the content of 22 cytokinin metabolites in the tissue of developing tobacco seedlings. Individual types of cytokinins in plants are interconverted to their respective forms by several enzymatic activities (5'-AMP-isopentenyltransferase, adenosine nucleosidase, 5'-nucleotidase, adenosine phosphorylase, adenosine kinase, trans-hydroxylase, zeatin reductase, beta-glucosidase, O-glucosyl transferase, N-glucosyl transferase, cytokinin oxidase). This paper reports modelling and measuring of the dynamics of endogenous cytokinins in tobacco plants grown on media supplemented with isopentenyl adenine (IP), zeatin (Z) and dihydrozeatin riboside (DHZR). Differences in phenotypes generated by the three cytokinins are shown and discussed, and the assumption that substrate concentration drives enzyme kinetics underpinned the construction of a simple mathematical model of cytokinin metabolism in developing seedlings. The model was tested on data obtained from liquid chromatography/tandem mass spectrometry cytokinin measurements on tobacco seedlings grown on Murashige and Skoog agar nutrient medium, and on plants grown in the presence of IP, Z and DHZR. A close match was found between measured and simulated data, especially after a series of iterative parameter searches, in which the parameters were set to obtain the best fit with one of the data sets.
Zobrazit více v PubMed
ArmstrongDJ.1994. Cytokinin oxidase and the regulation of cytokinin degradation. In: Mok DWS, Mok MC, eds. Cytokinins: chemistry, activity and function Boca Raton: CRC Press, 139–153.
BenkovaE, Witters E, Van Dongen W, Kolar J, Motyka V, Brzobohaty B, Van Onckelen H, Machackova I.1999. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiology 121: 245–251. PubMed PMC
BieleskiRL.1964. The problem of halting enzyme action when extracting plant tissues. Analytical Biochemistry 9: 431–442. PubMed
BrzobohatyB, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K.1993. Release of active cytokinin by a β‐glucosidase localized to the maize root meristem. Science 262: 1051–1054. PubMed
BrzobohatyB, Moore I, Palme K.1994. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Molecular Biology 26: 1483–1497. PubMed
ChenCM, Eckert RL.1977. Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiology 59: 443–447. PubMed PMC
ChenCM, Kristopeit SM.1981a Metabolism of cytokinin: deribosylation of cytokinin ribonucleoside by adenine nucleosidase from wheat germ cells. Plant Physiology 68: 1020–1023. PubMed PMC
ChenCM, Kristopeit SM.1981b Metabolism of cytokinin: deribosylation of cytokinin ribonucleotide by 5′‐nucleotidase from wheat germ cytosol. Plant Physiology 67: 494–498. PubMed PMC
ChenCM, Petschow B.1978. Metabolism of cytokinin: ribosylation of cytokinin bases by adenosine phosphorylase from wheat germ. Plant Physiology 62: 817–822. PubMed PMC
DixonSC, Martin RC, Mok MC, Shaw G, Mok DWS.1989. Zeatin glycosylation enzymes in Phaseolus: isolation of O‐glucosyl transferase from P. lunatus and comparison to O‐xylosyltransferase from P. vulgaris Plant Physiology 90: 1316–1321. PubMed PMC
EntschB, Parker CW, Letham DS, Summons RE.1979. Preparation and characterization, using high performance liquid chromatography, of an enzyme forming glucosides of cytokinins. Biochimica et Biophysica Acta 570: 124–139. PubMed
GoltsevV, Genkov T, Lexa M, Ivanova I.2001. Effect of benzyladenine, 4‐PU‐30 and thidiazuron on millisecond delayed and prompt chlorophyll fluorescence of Dianthus caryophyllus L. axillary buds cultured in vitro Scientia Horticulturae 89: 41–54.
HarePD, van Staden J.1994. Cytokinin oxidase: biochemical features and physiological significance. Physiologia Plantarum 91: 128–136.
HarePD, Cress WA, van Staden J.1997. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regulation 23: 79–103.
HensonIE.1978. Types, formation and metabolism of cytokinins in leaves of Alnus glutinosa (L.) Gaertn. Journal of Experimental Botany 29: 935–951.
KaminekM.1992. Progress in cytokinin research. Trends in Biotechnology 10: 159–164.
KaminekM, Armstrong DJ.1990. Genotypic variation in cytokinin oxidase from Phaseollus callus cultures. Plant Physiology 93: 1530–1538. PubMed PMC
KaminekM, Motyka V, Vankova R.1997. Regulation of cytokinin content in plant cells. Physiologia Plantarum 101: 689–700.
LethamDS, Palni LMS.1983. The biosynthesis and metabolism of cytokinins. Annual Review of Plant Physiology 34: 163–197.
LethamDS, Palni LMS, Tao GQ, Gollnow BI, Bates CM.1983. Regulators of cell division in plant tissues. XXIX. The activities of cytokinin glucosides and alanine conjugates in cytokinin bioassays. Journal of Plant Growth Regulation 2: 103–115.
LexaM, Genkov T, Brzobohaty B.2002. Inhibitory effects of elevated endogenous cytokinins on nitrate reductase in ipt‐expressing tobacco are eliminated by short‐term exposure to benzyladenine. Physiologia Plantarum 115: 284–290. PubMed
LightfoolDA, McDaniel KL, Ellis JK, Hammerton RH, Nicander B.1997. Methods for the analysis of cytokinin content, metabolism, and response. In: Dashek WV, ed. Methods in plant biochemistry and molecular biology, Boca Raton: CRC Press, 133–152.
McGawBA, Burch LR.1995. Cytokinin biosynthesis and metabolism. In: Davies PJ, ed. Plant hormones: physiology, biochemistry and molecular biology Dordrecht: Kluwer Academic Publishers, 98–117.
MartinRC, Mok MC, Shaw G, Mok DWS.1989. An enzyme mediating the conversion of zeatin to dihydrozeatin in Phaseolus embryos. Plant Physiology 90: 1630–1635. PubMed PMC
MoffattBA, Wang L, Allen MS, Stevens YY, Qin W, Snider J, von Schwartzenberg K.2000. Adenosine kinase of Arabidopsis Kinetic properties and gene expression. Plant Physiology 124: 1775–1785. PubMed PMC
MokDWS, Martin RC.1994. Cytokinin metabolic enzymes. In: Mok DWS, Mok MC, eds. Cytokinins: chemistry, activity and function Boca Raton: CRC Press, 129–137.
MokDWS, Mok MC.2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52: 89–118. PubMed
MotykaV, Faiss M, Strnad M, Kaminek M, Schmulling T.1996. Changes in cytokinin content and cytokinin oxidase activity in response to derepression of ipt gene transcription in transgenic tobacco calli and plants. Plant Physiology 112: 1035–1043. PubMed PMC
MurashigeT, Skoog F.1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.
RedigP, Motyka V, Van Onckelen HA, Kaminek M.1997. Regulation of cytokinin oxidase activity in tobacco callus expressing the T‐DNA ipt gene. Physiologia Plantarum 99: 89–96.
ThornleyJHM, Johnson IR.1990. Plant and crop modelling. A mathematical approach to plant and crop physiology. New York: Oxford University Press.