Thermostability of multidomain proteins: elongation factors EF-Tu from Escherichia coli and Bacillus stearothermophilus and their chimeric forms

. 2004 Jan ; 13 (1) : 89-99.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid14691225

Recombinant mesophilic Escherichia coli (Ec) and thermophilic Bacillus stearothermophilus (Bst) elongation factors EF-Tus, their isolated G-domains, and six chimeric EF-Tus composed of domains of either EF-Tu were prepared, and their GDP/GTP binding activities and thermostability were characterized. BstEF-Tu and BstG-domain bound GDP and GTP with affinities in nanomolar and submicromolar ranges, respectively, fully comparable with those of EcEF-Tu. In contrast, the EcG-domain bound the nucleotides with much lower, micromolar affinities. The exchange of domains 2 and 3 had essentially no effect on the GDP-binding activity; all complexes of chimeric EF-Tus with GDP retained K(d) values in the nanomolar range. The final thermostability level of either EF-Tu was the result of a cooperative interaction between the G-domains and domains 2 + 3. The G-domains set up a "basic" level of the thermostability, which was approximately 20 degrees C higher with the BstG-domain than with the EcG-domain. This correlated with the growth temperature optimum difference of both bacteria and two distinct thermostabilization features of the BstG-domain: an increase of charged residues at the expense of polar uncharged residues (CvP bias), and a decrease in the nonpolar solvent-accessible surface area. Domains 2 + 3 contributed by further stabilization of alpha-helical regions and, in turn, the functions of the G-domains to the level of the respective growth temperature optima. Their contributions were similar irrespective of their origin but, with Ecdomains 2 + 3, dependent on the guanine nucleotide binding state. It was lower in the GTP conformation, and the mechanism involved the destabilization of the alpha-helical regions of the G-domain by Ecdomain 2.

Zobrazit více v PubMed

Anborgh, P.H., Parmeggiani, A., and Jonák, J. 1992. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys 81. Eur. J. Biochem. 208 251–257. PubMed

Arai, K., Kawakita, M., and Kaziro, Y. 1974. Studies on the polypeptide elongation factors from E. coli. V. Properties of various complexes containing EF-Tu and EF-Ts. J. Biochem. (Tokyo) 76 293–306. PubMed

Arcari, P., Masullo, M., Arcucci, A., Ianniciello, G., de Paola, B., and Bocchini, V. 1999. A chimeric elongation factor containing the putative guanine nucleotide binding domain of archeal EF-1α and the M and C domains of eubacterial EF-Tu. Biochemistry 38 12288–12295. PubMed

Baldauf, S.L., Palmer, J.D., and Doolitle, W.F. 1996. The root of the universal three and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl. Acad. Sci. 93 7749–7754. PubMed PMC

Berchtold, H., Reshetnikova, L., Reiser, C.O.A., Schirmer, N.K., Sprinzl, M., and Hilgenfeld, R. 1993. Crystal structure of active elongation factor Tu reveals major domain rearrangement. Nature 365 126–132. PubMed

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. PubMed

Cambillau, C. and Claverie, J.M. 2000. Structural and genomic correlates of hyperthermostability. J. Biol. Chem. 275 32383–32386. PubMed

Cetin, R., Anborgh, P.H., Cool, R.H., and Parmeggiani, A. 1998. Functional role of the noncatalytic domains of elongation factor Tu in the interactions with ligands. Biochemistry 37 486–495. PubMed

Créchet, J.B. and Parmeggiani, A. 1986. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 α and mode of action of kirromycin. Eur. J. Biochem. 161 647–653. PubMed

Fasano, O., Bruns, W., Crechet, J.B., Sander, G., and Parmeggiani, A. 1978. Modification of elongation-factor-Tu • guanine-nucleotide interaction by kirromycin. A comparison with the effect of aminoacyl-tRNA and elongation factor Ts. Eur. J. Biochem. 89 557–565. PubMed

Hubbard, S.J. and Thornton, J.M. 1993. NACCESS computer program. Department of Biochemistry and Molecular Biology, University College, London.

Jaenicke, R. and Böhm, G. 1998. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8 738–748. PubMed

Jensen, M., Cool, R.H., Mortensen, K.K., Clark, B.F.C., and Parmeggiani, A. 1989. Structure–function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain. Eur. J. Biochem. 182 247–255. PubMed

Jonák, J. and Rychlík, I. 1973. Study of conditions for the inhibitory effect of N-tosyl-L-phenylalanyl chloromethane on protein synthesis and the possibility of existence of different forms of the elongation factor S3 in Bacillus stearothermophilus. Biochim. Biophys. Acta 324 554–562. PubMed

Jonák, J., Smrt, J., Holý, A., and Rychlík, I. 1980. Interaction of Escherichia coli EF-Tu • GTP and EF-Tu • GDP with analogues of the 3′ terminus of aminoacyl-tRNA. Eur. J. Biochem. 105 315–320. PubMed

Jonák, J., Pokorná, K., Meloun, B., and Karas, K. 1986. Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site for aminoacyl-tRNA. Eur. J. Biochem. 154 355–362. PubMed

Jones, M.D., Petersen, T.E., Nielsen, K.M., Magnusson, S., Sottrup-Jensen, L., Gausing, K., and Clark, B.F.C. 1980. The complete amino-acid sequence of elongation factor Tu from Escherichia coli. Eur. J. Biochem. 108 507–526. PubMed

Kaziro, Y. 1978. The role of guanosine 5-triphosphate in polypeptide chain elongation. Biochim. Biophys. Acta 505 95–127. PubMed

Kjeldgaard, M. and Nyborg, J. 1992. Refined structure of elongation factor EF-Tu from Escherichia coli. J. Mol. Biol. 223 721–742. PubMed

Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. 1993. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1 35–50. PubMed

Knudsen, C.R., Kjaersgard, I.V., Wiborg, O., and Clark, B.F. 1995. Mutation of the conserved Gly94 and Gly126 in elongation factor Tu from Escherichia coli. Elucidation of their structural and functional roles. Eur. J. Biochem. 228 176–183. PubMed

Krab, J.M. and Parmeggiani, A. 1998. EF-Tu, a GTPase odyssey. Biochim. Biophys. Acta 1443 1–22. PubMed

Krásný, L., Mesters, J.R., Tieleman, L.N., Kraal, B., Fučík, V., Hilgenfeld, R., and Jonák, J. 1998. Structure and expression of elongation factor Tu from Bacillus stearothermophilus. J. Mol. Biol. 283 371–381. PubMed

Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680–685. PubMed

Laurberg, M., Mansilla, F., Clark, B.F., and Knudsen, C.R. 1998. Investigation of functional aspects of the N-terminal region of elongation factor Tu from Escherichia coli using a protein engineering approach. J. Biol. Chem. 273 4387–4391. PubMed

Masullo, M., Ianniciello, G., Arcari, P., and Bocchini, V. 1997. Properties of truncated forms of the elongation factor 1α from the archaeon Sulfolobus solfataricus. Eur. J. Biochem. 243 468–473. PubMed

Miller, D.L. and Weissbach, H. 1977. Factors involved in the transfer of aminoacyl-tRNA to the ribosome. In Molecular mechanisms in protein biosynthesis (eds. H. Weissbach and S. Pestka), pp. 323–373. Academic Press, New York.

Nagata, S., Iwasaki, K., and Kaziro, Y. 1976. Interaction of the low molecular weight form of elongation factor 1 with guanine nucleotides and aminoacyl-tRNA. Arch. Biochem. Biophys. 172 168–177. PubMed

Nock, S., Grillenbeck, N., Ahmadian, M.R., Ribeiro, S., Kreutzer, R., and Sprinzl, M. 1995. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8. Eur. J. Biochem. 234 132–139. PubMed

Parmeggiani, A., Swart, G.W.M., Mortensen, K.K., Jensen, M., Clark, B.F.C., Dente, L., and Cortese, R. 1987. Properties of genetically engineered G domain of elongation factor Tu. Proc. Natl. Acad. Sci. 84 3141–3145. PubMed PMC

Printz, M.P. and Miller, D.L. 1973. Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem. Biophys. Res. Commun. 53 149–156. PubMed

Sambrook, J. and Russell, D.W. 1989. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Sanangelantoni, A.M., Cammarano, P., and Tiboni, O. 1996. Manipulation of the tuf gene provides clues to the localization of sequence element(s) involved in the thermal stability of Thermotoga maritima elongation factor Tu. Microbiology 142 2525–2532. PubMed

Song, H., Parsons, M.R., Rowsell, S., Leonard, G., and Phillips, S.E.V. 1999. Crystal structure of intact elongation factor EF-Tu from Escherichia coli in GDP conformation at 2.05 Å resolution. J. Mol. Biol. 285 1245–1256. PubMed

Suhre, K. and Claverie, J.M. 2003. Genomic correlates of hyperthermostability, an update. J. Biol. Chem. 278 17198–17202. PubMed

Szilagyi, A. and Zavodszky, P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure Fold. Des. 8 493–504. PubMed

Tomincová, H., Krásný, L., and Jonák, J. 2002. Isolation of chimaeric forms of elongation factor EF-Tu by affinity chromatography. J. Chromat. B 770 129–135. PubMed

Vieille, C. and Zeikus, G.J. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65 1–43. PubMed PMC

Wittinghofer, A. and Leberman, R. 1976. Elongation factor T from Bacillus stearothermophilus and Escherichia coli. Purification and some properties of EF-Tu and EF-Ts from Bacillus stearothermophilus. Eur. J. Biochem. 62 373–382. PubMed

Wormer, W., Glöckner, C., Mierzowski, M., and Wolf, H. 1983. On heterogenity of elongation factor Tu among eubacteria. FEMS Microbiol. Lett. 18 69–73.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...