Pyruvate decarboxylase, the target for omeprazole in metronidazole-resistant and iron-restricted Tritrichomonas foetus
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15155220
PubMed Central
PMC415579
DOI
10.1128/aac.48.6.2185-2189.2004
PII: 48/6/2185
Knihovny.cz E-zdroje
- MeSH
- antitrichomonádové látky farmakologie MeSH
- deficit železa * MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- inhibitory enzymů farmakologie MeSH
- kinetika MeSH
- léková rezistence MeSH
- metronidazol farmakologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- omeprazol farmakologie MeSH
- pyruvátdekarboxylasa účinky léků MeSH
- Tritrichomonas foetus účinky léků MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antitrichomonádové látky MeSH
- inhibitory enzymů MeSH
- metronidazol MeSH
- omeprazol MeSH
- pyruvátdekarboxylasa MeSH
The substituted benzimidazole omeprazole, used for the treatment of human peptic ulcer disease, inhibits the growth of the metronidazole-resistant bovine pathogen Tritrichomonas foetus in vitro (MIC at which the growth of parasite cultures is inhibited by 50%, 22 microg/ml [63 microM]). The antitrichomonad activity appears to be due to the inhibition of pyruvate decarboxylase (PDC), which is the key enzyme responsible for ethanol production and which is strongly upregulated in metronidazole-resistant trichomonads. PDC was purified to homogeneity from the cytosol of metronidazole-resistant strain. The tetrameric enzyme of 60-kDa subunits is inhibited by omeprazole (50% inhibitory concentration, 16 microg/ml). Metronidazole-susceptible T. foetus, which expresses very little PDC, is only slightly affected. Omeprazole has the same inhibitory effect on T. foetus cells grown under iron-limited conditions. Similarly to metronidazole-resistant cells, T. foetus cells grown under iron-limited conditions have nonfunctional hydrogenosomal metabolism and rely on cytosolic PDC-mediated ethanol fermentation.
Zobrazit více v PubMed
Belli, W. A., and J. Fryklund. 1995. Partial characterization and effect of omeprazole on ATPase activity in Helicobacter pylori by using permeabilized cells. Antimicrob. Agents Chemother. 39:1717-1720. PubMed PMC
Čerkasovová, A., J. Čerkasov, and J. Kulda. 1984. Metabolic differences between metronidazole resistant and susceptible strains of Tritrichomonas foetus. Mol. Biochem. Parasitol. 11:105-118. PubMed
Cole, S. T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry III, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, B. G. Barrell, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537-544. PubMed
Cole, S. T., K. Eiglmeier, J. Parkhill, K. D. James, N. R. Thomson, P. R. Wheeler, N. Honore, T. Garnier, C. Churcher, D. Harris, K. Mungall, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. M. Davies, K. Devlin, S. Duthoy, T. Feltwell, A. Fraser, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, C. Lacroix, J. Maclean, S. Moule, L. Murphy, K. Oliver, M. A. Quail, M. A. Rajandream, K. M. Rutherford, S. Rutter, K. Seeger, S. Simon, M. Simmonds, J. Skelton, R. Squares, S. Squares, K. Stevens, K. Taylor, S. Whitehead, J. R. Woodward, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:1007-1011. PubMed
Diamond, L. S. 1957. The establishment of various trichomonads of animals and man in axenic cultures. J. Parasitol. 43:488-490. PubMed
Edwards, D. I. 1993. Nitroimidazole drugs—action and resistance mechanisms. I. Mechanisms of action. J. Antimicrob. Chemother. 31:9-20. PubMed
Fellenius, E., T. Berglindh, G. Sachs, L. Olbe, B. Elander, S. E. Sjostrand, and B. Wallmark. 1981. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+, K+)ATPase. Nature 290:159-161. PubMed
Holzer, H., G. Schultz, C. Villar-Palasi, and J. Jüntgen-Sell. 1956. Isolierung der Hefepyruvatdecarboxylase und Untersuchungen über Aktivität des Enzyms in lebenden Zellen. Biochem. Z. 327:331-334. PubMed
Iwahi, T., H. Satoh, M. Nakao, T. Iwasaki, T. Yamazaki, K. Kubo, T. Tamura, and A. Imada. 1991. Lansoprazole, a novel benzimidazole proton pump inhibitor, and its related compounds have selective activity against Helicobacter pylori. Antimicrob. Agents Chemother. 35:490-496. PubMed PMC
Jiang, S., J. Meadows, S. A. Anderson, and A. J. Mukkada. 2002. Antileishmanial activity of the antiulcer agent omeprazole. Antimicrob. Agents Chemother. 46:2569-2574. PubMed PMC
Kaiser, B., T. Munder, H. P. Saluz, W. Kunkel, and R. Eck. 1999. Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15:585-591. PubMed
Konig, S. 1998. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochim. Biophys. Acta 1385:271-286. PubMed
Korting, W., and D. Fairbairn. 1972. Anaerobic energy metabolism in Moniliformis dubius (Acanthocephala). J. Parasitol. 58:45-50. PubMed
Kulda, J., J. Čerkasov, P. Demeš, and A. Čerkasovová. 1984. Tritrichomonas foetus: stable anaerobic resistance to metronidazole in vitro. Exp. Parasitol. 57:93-103. PubMed
Kulda, J., H. Kabíčková, J. Tachezy, A. Čerkasovová, and J. Čerkasov. 1988. Metronidazole resistant trichomonads: mechanism of in vitro developed anaerobic resistance, p. 137-160. In D. Lloyd, G. H. Coombs, and T. A. Paget (ed.), Biochemistry and molecular biology of anaerobic protozoa. Harwood Academic, Chur, Switzerland.
Kulda, J. 1999. Trichomonads, hydrogenosomes and drug resistance. Int. J. Parasitol. 29:199-212. PubMed
Lorentzon, P., R. Jackson, B. Wallmark, and G. Sachs. 1987. Inhibition of (H+, K+) ATPase by omeprazole in isolated gastric vesicles requires proton transport. Biochim. Biophys. Acta 897:41-51. PubMed
Müller, M. 1981. Action of clinically utilized 5-nitroimidazoles on microorganisms. Scand. J. Infect. Dis. Suppl. 26:31-41. PubMed
Nixon, P. F., R. J. Diefenbach, and R. G. Duggleby. 1992. Inhibition of transketolase and pyruvate decarboxylase by omeprazole. Biochem. Pharmacol. 44:177-179. PubMed
Raj, K. C., L. A. Talarico, L. O. Ingram, and J. A. Maupin-Furlow. 2002. Cloning and characterization of the Zymobacter palmae pyruvate decarboxylase gene (pdc) and comparison to bacterial homologues. Appl. Environ. Microbiol. 68:2869-2876. PubMed PMC
Rivoal, J., B. Ricard, and A. Pradet. 1990. Purification and partial characterization of pyruvate decarboxylase from Oryza sativa L. Eur. J. Biochem. 194:791-797. PubMed
Sasaki, Y., J. Ishikawa, A. Yamashita, K. Oshima, T. Kenri, K. Furuya, C. Yoshino, A. Horino, T. Shiba, T. Sasaki, and M. Hattori. 2002. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res. 30:5293-5300. PubMed PMC
Tachezy, J., J. Kulda, I. Bahníková, P. Suchan, J. Rázga, and J. Schrével. 1996. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp. Parasitol. 83:216-228. PubMed
Tachezy, J., P. Suchan, J. Schrével, and J. Kulda. 1998. The host-protein-independent iron uptake by Tritrichomonas foetus. Exp. Parasitol. 90:155-163. PubMed
Vañáčová, S., D. Rasoloson, J. Rázga, I. Hrdý, J. Kulda, and J. Tachezy. 2001. Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53-62. PubMed