Comparative phenotypic characterization of keratinocytes originating from hair follicles
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- buněčná diferenciace MeSH
- fenotyp MeSH
- galektiny analýza MeSH
- imunodominantní epitopy analýza MeSH
- keratinocyty chemie MeSH
- lidé MeSH
- prasata MeSH
- vlasový folikul chemie cytologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- galektiny MeSH
- imunodominantní epitopy MeSH
The principal pool of epidermal stem cells is located in the bulge region of the hair follicle root sheath. In this research project, we have used a refined procedure to isolate porcine hair follicles including their root sheath and for comparison purposes also human cell material. These cells migrating from the hair follicles were then cytochemically characterized. A panel of antibodies and two labeled plant lectins were tested on cell material obtained under a range of assorted experimental conditions. Due to their role in growth regulation we also studied two endogenous lectins, specifically monitoring their expression and the presence of accessible ligands. These in vitro results were compared with findings on porcine and human hair follicles and human basal cell carcinomas in situ. The keratinocytes originating from hair follicles in the presence of feeder cells are rather undifferentiated and express galectin-1/galectin-1-binding sites but not galectin-3 in their nuclei associated with DeltaNp63alpha positivity. Nuclear reactivity for galectin-1 was rarely observed in the bulge of the outer root sheath of the human hair follicle and of basal cell carcinomas and absent in porcine tissue samples. Exclusion of feeder cells from our cultivation system of porcine hair follicles led to the formation of spheroid bodies from these keratinocytes. Ki67 as a marker of proliferation was not present in the nuclei of cells forming these spheroids. One part of these bodies is positive for markers of post-mitotic differentiated cells, while the other spheroids are composed of poorly differentiated cells, which are able to adhere to feeder cells and form growing colonies. In summary, the detection of galectin-1 and also nuclear binding sites for this endogenous effector points to intracellular functionality of this lectin. It can be considered a potential marker of a distinct cell population, probably at the beginning of a differentiation cascade of keratinocytes.
Zobrazit více v PubMed
Cells Tissues Organs. 2002;171(2-3):135-44 PubMed
Cancer. 2003 Apr 15;97(8):1849-58 PubMed
Biochimie. 2001 Jul;83(7):659-66 PubMed
Bioorg Med Chem Lett. 2004 Mar 22;14(6):1437-40 PubMed
Glycoconj J. 2001 Aug;18(8):589-613 PubMed
Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;52(2):107-15 PubMed
Mol Cell Biol. 1997 Aug;17(8):4730-7 PubMed
J Cancer Res Clin Oncol. 2002 Feb;128(2):103-10 PubMed
Anat Histol Embryol. 2001 Feb;30(1):3-31 PubMed
J Biol Chem. 2002 Oct 4;277(40):37169-75 PubMed
Dev Biol. 2003 Jan 15;253(2):258-63 PubMed
Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4495-500 PubMed
Hepatology. 2002 Jul;36(1):22-9 PubMed
Naturwissenschaften. 2000 Mar;87(3):108-21 PubMed
Anat Rec A Discov Mol Cell Evol Biol. 2003 Mar;271(1):225-39 PubMed
Biochim Biophys Acta. 2002 Sep 19;1572(2-3):263-73 PubMed
Nat Biotechnol. 2004 Apr;22(4):411-7 PubMed
Int J Biochem Cell Biol. 2002 Jan;34(1):6-9 PubMed
J Cell Sci. 2002 Jan 15;115(Pt 2):355-66 PubMed
Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13473-5 PubMed
Glycobiology. 2004 Mar;14(3):293-300 PubMed
Acta Anat (Basel). 1998;161(1-4):162-79 PubMed
Cell Cycle. 2004 Apr;3(4):411-3 PubMed
Chembiochem. 2004 Jun 7;5(6):740-64 PubMed
Folia Biol (Praha). 2003;49(3):118-27 PubMed
Biol Cell. 2003 Nov;95(8):535-45 PubMed
Stem Cells. 2003;21(6):661-9 PubMed
Bioconjug Chem. 2004 Jan-Feb;15(1):87-98 PubMed
J Investig Dermatol Symp Proc. 2003 Jun;8(1):28-38 PubMed
J Dermatol Sci. 2002 Apr;28(3):173-80 PubMed
J Neuropathol Exp Neurol. 2002 Jul;61(7):585-96 PubMed
Cell Tissue Res. 2002 Jan;307(1):35-46 PubMed
Oncogene. 2003 Sep 18;22(40):6277-88 PubMed
Histol Histopathol. 2000 Jan;15(1):85-94 PubMed
Trends Neurosci. 2003 Jul;26(7):351-9 PubMed
Acta Anat (Basel). 1998;161(1-4):110-29 PubMed
Cancer Res. 2004 May 1;64(9):3112-8 PubMed
Biochim Biophys Acta. 2002 Sep 19;1572(2-3):165-77 PubMed
Biol Cell. 2002 Oct;94(6):365-73 PubMed
Folia Biol (Praha). 1999;45(4):157-62 PubMed
J Biol Chem. 2001 Sep 21;276(38):35917-23 PubMed
Histol Histopathol. 2003 Jul;18(3):771-9 PubMed
Nucleic Acids Res. 2001 Sep 1;29(17 ):3595-602 PubMed
J Cell Sci. 1996 May;109 ( Pt 5):1017-28 PubMed
Biomaterials. 1998 Jan-Feb;19(1-3):141-6 PubMed
J Biol Chem. 1998 May 1;273(18):11205-11 PubMed
Chembiochem. 2001 Nov 5;2(11):822-30 PubMed
J Cancer Res Clin Oncol. 1999 Aug-Sep;125(8-9):461-74 PubMed
APMIS. 2002 Dec;110(12):845-56 PubMed
Leukemia. 2002 May;16(5):840-5 PubMed
Biochemistry. 1996 May 14;35(19):6073-9 PubMed
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3156-61 PubMed
Eur J Biochem. 1997 Feb 1;243(3):543-76 PubMed
Anat Histol Embryol. 2004 Dec;33(6):348-54 PubMed