Identification of a holin encoded by the Streptomyces aureofaciens phage micro1/6; functional analysis in Escherichia coli system
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15881403
DOI
10.1007/bf02931549
Knihovny.cz E-resources
- MeSH
- Bacteriophages chemistry genetics metabolism MeSH
- Bacteriolysis MeSH
- Endopeptidases genetics metabolism MeSH
- Escherichia coli genetics growth & development metabolism MeSH
- Cloning, Molecular MeSH
- Molecular Sequence Data MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Streptomyces aureofaciens virology MeSH
- Viral Proteins chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- endolysin MeSH Browser
- Endopeptidases MeSH
- Viral Proteins MeSH
An open reading frame encoding an 88 amino acid protein was present downstream of the previously characterized endolysin of Streptomyces aureofaciens phage micro1/6. Structural analysis of its sequence revealed features characteristic for holin. This open reading frame encoding the putative holin was amplified by polymerase chain reaction and cloned into the expression vector pET-21d(+). Synthesis of the holin-like protein resulted in bacterial cell death but not lysis. The holmicro1/6 gene was able to complement the defective lambda S allele in the nonsuppressing Escherichia coli HB101 strain to produce phage progeny, This fact suggests that the proteins encoded by both phage genes have analogous function, i.e. the streptomycete holin induces nonspecific lesions in the cytoplasmic membrane, through which the lambda endolysin gains an access to its substrate, the cell wall. The concomitant expression of both S. aureofaciens holmicro 1/6 and lambda endolysin in E. coli resulted in abrupt cell lysis. This result provided further evidence that the product of holmicro 1/6 gene is a holin.
See more in PubMed
Microbiology. 1998 Apr;144 ( Pt 4):885-93 PubMed
J Mol Biol. 1982 May 5;157(1):105-32 PubMed
Appl Environ Microbiol. 1999 Feb;65(2):569-77 PubMed
FEMS Microbiol Lett. 1997 Aug 15;153(2):393-8 PubMed
J Bacteriol. 2003 Jul;185(13):3795-803 PubMed
FEMS Microbiol Lett. 1998 May 15;162(2):265-74 PubMed
FEMS Microbiol Lett. 1999 Feb 15;171(2):231-8 PubMed
FEMS Microbiol Rev. 1995 Aug;17(1-2):191-205 PubMed
Microbiol Rev. 1992 Sep;56(3):430-81 PubMed
J Bacteriol. 1998 Jan;180(2):210-7 PubMed
Nucleic Acids Res. 1979 Nov 24;7(6):1513-23 PubMed
Mol Microbiol. 1995 Jun;16(6):1231-41 PubMed
Appl Environ Microbiol. 1995 Dec;61(12):4348-56 PubMed
J Bacteriol. 1997 May;179(9):2845-51 PubMed
Mol Microbiol. 1996 Aug;21(4):675-82 PubMed
Gene. 1997 Sep 15;197(1-2):137-45 PubMed
Folia Microbiol (Praha). 2003;48(6):737-44 PubMed
Mol Microbiol. 1996 Feb;19(4):667-81 PubMed
Virology. 1971 Mar;43(3):607-22 PubMed
Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6
GENBANK
AY322429