Exposure of postnatal rats to a static magnetic field of 0.14 T influences functional laterality of the hippocampal high-affinity choline uptake system in adulthood; in vitro test with magnetic nanoparticles

. 2005 Feb ; 30 (2) : 253-62.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid15895829

Our previous experiments indicated an age- and sex-dependent functional lateralization of a high-affinity choline uptake system in hippocampi of Wistar rats. The system is connected with acetylcholine synthesis and also plays a role in spatial navigation. The current study demonstrates that a single in vivo exposure of 7- or 14-day-old males to a static magnetic field of 0.14 T for 60-120 min evokes asymmetric alterations in the activity of carriers in adulthood. Namely, the negative field (antiparallel orientation with a vertical component of the geomagnetic field) mediated a more marked decrease in the right hippocampus. The positive field (parallel orientation) was ineffective. Moreover, differences between the carriers from the right and the left hippocampi were observed on synaptosomes pretreated with superparamagnetic nanoparticles and exposed for 30 min in vitro. The positive field enhanced more markedly the activity of carriers from the right hippocampus, the negative that from the left hippocampus, on the contrary. Our results demonstrate functionally teratogenic risks of the alterations in the orientation of the strong static magnetic field for postnatal brain development and suggest functional specialization of both hippocampi in rats. Choline carriers could be involved as secondary receptors in magnetoreception through direct effects of geomagnetic field on intracellular magnetite crystals and nanoparticles applied in vivo should be a useful tool to evaluate magnetoreception in future research.

Zobrazit více v PubMed

Biochem Biophys Res Commun. 2002 Mar 22;292(1):200-7 PubMed

Neurochem Res. 2004 Apr;29(4):671-80 PubMed

Science. 1997 Oct 17;278(5337):483-6 PubMed

Eur Neuropsychopharmacol. 2001 Oct;11(5):367-73 PubMed

Behav Brain Res. 1996 Jan;74(1-2):25-44 PubMed

J Neurochem. 1991 Sep;57(3):915-21 PubMed

Bioelectromagnetics. 1998;19(7):432-7 PubMed

Prog Neuropsychopharmacol Biol Psychiatry. 1999 Jul;23(5):941-9 PubMed

Bioelectromagnetics. 1993;14(1):5-15 PubMed

Curr Opin Neurobiol. 2002 Apr;12(2):205-10 PubMed

Science. 2001 Oct 12;294(5541):366-8 PubMed

Brain Cogn. 2000 Jun-Aug;43(1-3):429-38 PubMed

Am J Physiol. 1992 Jun;262(6 Pt 1):C1418-22 PubMed

Neurosci Lett. 1999 Jun 4;267(3):185-8 PubMed

Curr Opin Neurobiol. 2002 Dec;12(6):735-44 PubMed

Science. 1998 May 8;280(5365):921-4 PubMed

Biophys J. 2000 Feb;78(2):707-18 PubMed

Neurosci Biobehav Rev. 1996 Winter;20(4):607-15 PubMed

Surg Neurol. 1996 Jan;45(1):62-6 PubMed

Nat Rev Neurosci. 2003 Jan;4(1):37-48 PubMed

Clin Exp Pharmacol Physiol. 2001 Nov;28(11):884-6 PubMed

Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398-403 PubMed

Trends Neurosci. 2000 Apr;23(4):153-9 PubMed

Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14729-32 PubMed

Bioelectromagnetics. 1999;20(5):284-9 PubMed

Biometals. 1999 Mar;12(1):77-82 PubMed

Neuroreport. 2000 Aug 21;11(12):2681-5 PubMed

Neuropeptides. 1999 Apr;33(2):155-8 PubMed

Neurochem Res. 2003 Apr;28(3-4):397-405 PubMed

Nature. 2002 Oct 3;419(6906):467-70 PubMed

Exp Brain Res. 2002 May;144(1):122-6 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

J Neurochem. 1993 Apr;60(4):1191-201 PubMed

Biomaterials. 2004 Oct;25(23 ):5405-13 PubMed

Science. 2003 May 9;300(5621):990-4 PubMed

Bioelectromagnetics. 1997;18(1):36-46 PubMed

Brain Res Brain Res Rev. 1999 Aug;30(2):135-52 PubMed

Drug Dev Ind Pharm. 2002 Aug;28(7):749-71 PubMed

Neuroreport. 2001 Oct 8;12(14):3019-22 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...