Characterization of the alternative sigma factor sigmaG in Streptomyces coelicolor A3(2)
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
15954533
DOI
10.1007/bf02931293
Knihovny.cz E-resources
- MeSH
- Genes, Bacterial MeSH
- Bacterial Proteins chemistry genetics isolation & purification metabolism MeSH
- DNA Footprinting MeSH
- Escherichia coli genetics MeSH
- Transcription, Genetic * MeSH
- Genes, rRNA MeSH
- Cloning, Molecular MeSH
- Molecular Sequence Data MeSH
- Plasmids MeSH
- Promoter Regions, Genetic MeSH
- Amino Acid Sequence MeSH
- Base Sequence MeSH
- Sequence Homology, Nucleic Acid MeSH
- Sequence Alignment MeSH
- Sigma Factor chemistry genetics isolation & purification metabolism MeSH
- Streptomyces coelicolor physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Sigma Factor MeSH
Using the previously established two-plasmid system for the identification of promoters recognized by a particular sigma factor, we identified two positive DNA fragments that were active only after induced sigG, encoding sigma factor sigmaG of Streptomyces coelicolor A3(2). High-resolution S1-nuclease mapping in the Escherichia coli two-plasmid system identified potential promoters, PG45 and PG54, whose sequences were similar to the consensus sequence of Bacillus subtilis promoters recognized by the general stress-response sigma factor sigmaB. However, both putative sigmaG-dependent promoters were not active in S. coelicolor. Sequence analysis of the regions potentially governed by the promoters revealed a gene encoding a hypothetical protein SCO5555 and the rrnE gene encoding rRNA operon. To confirm that sigG encodes sigma factor, the sigmaG protein was overproduced in E. coli and purified. In an in vitro transcription assay, sigmaG, after complementation with S. coelicolor core RNA polymerase, was able to recognize both sigmaG-dependent promoters and initiate transcription.
See more in PubMed
Gene. 1992 Apr 1;113(1):55-65 PubMed
Mol Gen Genet. 2000 Oct;264(3):251-6 PubMed
Mol Gen Genet. 1988 Feb;211(2):191-6 PubMed
Methods Enzymol. 1980;65(1):499-560 PubMed
FEMS Microbiol Lett. 1999 Mar 15;172(2):153-8 PubMed
Mol Microbiol. 1995 Jul;17(1):37-48 PubMed
Gene. 1998 Feb 16;208(1):43-50 PubMed
Mol Microbiol. 1989 Aug;3(8):1011-23 PubMed
J Bacteriol. 1997 Jul;179(13):4264-9 PubMed
Microbiology (Reading). 1994 Dec;140 ( Pt 12):3357-65 PubMed
J Mol Microbiol Biotechnol. 2001 Jan;3(1):95-101 PubMed
Folia Microbiol (Praha). 1998;43(6):605-12 PubMed
Mol Microbiol. 1988 Sep;2(5):569-79 PubMed
Folia Microbiol (Praha). 2003;48(4):489-95 PubMed
Mol Gen Genet. 1995 May 10;247(3):387-90 PubMed
Nat Biotechnol. 2003 May;21(5):526-31 PubMed
FEMS Microbiol Lett. 2000 Aug 1;189(1):31-8 PubMed
Anal Biochem. 2001 Jun 1;293(1):138-9 PubMed
FEMS Microbiol Lett. 2002 Apr 9;209(2):229-35 PubMed
Nature. 2002 May 9;417(6885):141-7 PubMed
Mol Microbiol. 1996 Feb;19(3):417-28 PubMed
Arch Microbiol. 2001 Dec;177(1):98-106 PubMed
Methods Mol Biol. 2001;160:481-94 PubMed
Mol Microbiol. 2001 May;40(4):804-14 PubMed
J Mol Biol. 2003 Jan 24;325(4):637-49 PubMed
Mol Microbiol. 2003 Feb;47(3):699-714 PubMed
Mol Microbiol. 2001 Oct;42(1):205-14 PubMed