Characterization of acclimation of Hordeum vulgare to high irradiation based on different responses of photosynthetic activity and pigment composition
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu časopisecké články
PubMed
16228536
DOI
10.1023/a:1016018900535
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The ability of spring barley (Hordeum vulgare cv. Akcent) to adjust the composition and function of the photosynthetic apparatus to growth irradiances of 25-1200 mumol m(-2) s(-1) was studied by gas exchange and chlorophyll a fluorescence measurements and high-performance liquid chromatography. The increased growth irradiance stimulated light- and CO(2)-saturated rates of CO(2) assimilation expressed on a leaf area basis up to 730 mumol m(-2) s(-1) (HL730), whereas at an irradiance of 1200 mumol m(-2) s(-1) (EHL1200) both rates decreased significantly. Further, the acclimation to EHL1200 was associated with an extremely high chlorophyll a/b ratio (3.97), a more than doubled xanthophyll cycle pool (VAZ) and a six-fold higher de-epoxidation state of the xanthophyll cycle pigments as compared to barley grown under 25 mumol m(-2) s(-1) (LL25). EHL1200 plants also exhibited a long-term inhibition of Photosystem II (PS II) photochemical efficiency (F (v)/F (m)). Photosynthetic capacity, chlorophyll a/b and VAZ revealed a linear trend of dependence on PS II excitation pressure in a certain range of growth irradiances (100-730 mumol m(-2) s(-1)). The deviation from linearity of these relationships for EHL1200 barley is discussed. In addition, the role of increased VAZ and/or accumulation of zeaxanthin and antheraxanthin in acclimation of barley to high irradiance is studied with respect to regulation of non-radiative dissipation and/or photochemical efficiency within PS II.
Zobrazit více v PubMed
Photosynth Res. 1996 Oct;50(1):23-32 PubMed
Planta. 1987 Apr;170(4):489-504 PubMed
FEBS Lett. 1998 Mar 13;424(3):267-70 PubMed
Biochim Biophys Acta. 1998 Jan 27;1363(1):47-58 PubMed
Plant Mol Biol. 1996 Dec;32(5):773-83 PubMed
Photochem Photobiol. 1996 Sep;64(3):552-63 PubMed
Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14204-9 PubMed
Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1371-84 PubMed
Photosynth Res. 1993 Jan;35(1):67-78 PubMed
Plant Physiol. 1996 Jan;110(1):61-71 PubMed
Photosynth Res. 1991 Jan;27(1):31-9 PubMed
Photosynth Res. 1994 Dec;42(3):191-202 PubMed
Planta. 2000 Dec;212(1):93-102 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:333-359 PubMed
Photosynth Res. 1990 Mar;23(3):331-43 PubMed
Plant Physiol. 1998 Jun;117(2):659-65 PubMed
Plant Cell. 1998 Jul;10(7):1121-34 PubMed
FEBS Lett. 1994 Oct 3;352(3):265-70 PubMed
Eur J Biochem. 1993 Mar 1;212(2):297-303 PubMed
Nature. 2000 Jan 27;403(6768):391-5 PubMed
Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10237-41 PubMed
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):14162-7 PubMed
Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1433-46 PubMed
Plant Physiol. 1998 Sep;118(1):227-35 PubMed
Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1351-9 PubMed
Plant Physiol. 1998 Nov;118(3):827-34 PubMed