Conformation, protein recognition and repair of DNA interstrand and intrastrand cross-links of antitumor trans-[PtCl2(NH3)(thiazole)]
Language English Country England, Great Britain Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
16237123
PubMed Central
PMC1258167
DOI
10.1093/nar/gki884
PII: 33/18/5819
Knihovny.cz E-resources
- MeSH
- DNA Adducts chemistry metabolism MeSH
- Cisplatin chemistry toxicity MeSH
- DNA biosynthesis MeSH
- Nucleic Acid Conformation MeSH
- DNA Repair MeSH
- Organoplatinum Compounds chemistry toxicity MeSH
- High Mobility Group Proteins metabolism MeSH
- Antineoplastic Agents chemistry toxicity MeSH
- Cross-Linking Reagents chemistry toxicity MeSH
- Thiazoles chemistry toxicity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- DNA Adducts MeSH
- Cisplatin MeSH
- DNA MeSH
- Organoplatinum Compounds MeSH
- High Mobility Group Proteins MeSH
- Antineoplastic Agents MeSH
- Cross-Linking Reagents MeSH
- Thiazoles MeSH
- trans-(PtCl2(NH3)(thiazole)) MeSH Browser
- transplatin MeSH Browser
Replacement of one ammine in clinically ineffective trans-[PtCl2(NH3)2] (transplatin) by a planar N-heterocycle, thiazole, results in significantly enhanced cytotoxicity. Unlike 'classical' cisplatin {cis-[PtCl2(NH3)2]} or transplatin, modification of DNA by this prototypical cytotoxic transplatinum complex trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) leads to monofunctional and bifunctional intra or interstrand adducts in roughly equal proportions. DNA fragments containing site-specific bifunctional DNA adducts of trans-PtTz were prepared. The structural distortions induced in DNA by these adducts and their consequences for high-mobility group protein recognition, DNA polymerization and nucleotide excision repair were assessed in cell-free media by biochemical methods. Whereas monofunctional adducts of trans-PtTz behave similar to the major intrastrand adduct of cisplatin [J. Kasparkova, O. Novakova, N. Farrell and V. Brabec (2003) Biochemistry, 42, 792-800], bifunctional cross-links behave distinctly differently. The results suggest that the multiple DNA lesions available to trans-planaramine complexes may all contribute substantially to their cytotoxicity so that the overall drug cytotoxicity could be the sum of the contributions of each of these adducts. However, acquisition of drug resistance could be a relatively rare event, since it would have to entail resistance to or tolerance of multiple, structurally dissimilar DNA lesions.
See more in PubMed
Farrell N. Current status of structure–activity relationships of platinum anticancer drugs: activation of the trans geometry. In: Sigel A., Sigel H., editors. Metal Ions in Biological Systems. Vol. 32. New York, Basel, Hong Kong: Marcel Dekker, Inc.; 1996. pp. 603–639. PubMed
Natile G., Coluccia M. In, trans-Platinum compounds in cancer therapy: a largely unexplored strategy for identifying novel antitumor platinum drugs. In: Clarke M.J., Sadler P.J., editors. Metallopharmaceuticals. Vol. 1. Berlin: Springer; 1999. pp. 73–98.
Brabec V. DNA modifications by antitumor platinum and ruthenium compounds: their recognition and repair. Prog. Nucleic Acid Res. Mol. Biol. 2002;71:1–68. PubMed
Johnson N.P., Butour J.-L., Villani G., Wimmer F.L., Defais M., Pierson V., Brabec V. Metal antitumor compounds: the mechanism of action of platinum complexes. Prog. Clin. Biochem. Med. 1989;10:1–24.
Zakovska A., Novakova O., Balcarova Z., Bierbach U., Farrell N., Brabec V. DNA interactions of antitumor trans-[PtCl2(NH3)(quinoline)] Eur. J. Biochem. 1998;254:547–557. PubMed
Bierbach U., Qu Y., Hambley T.W., Peroutka J., Nguyen H.L., Doedee M., Farrel N. Synthesis, structure, biological activity and DNA binding of platinum(II) complexes of the type trans-[PtCl2(NH3)L] (L = planar nitrogen base). Effect of l and cis/trans isomerism on sequence specificity and unwinding properties observed in globally platinated DNA. Inorg. Chem. 1999;38:3535–3542. PubMed
Brabec V., Neplechova K., Kasparkova J., Farrell N. Steric control of DNA interstrand cross-link sites of trans platinum complexes: specificity can be dictated by planar nonleaving groups. J. Biol. Inorg. Chem. 2000;5:364–368. PubMed
Kasparkova J., Novakova O., Farrell N., Brabec V. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts. Biochemistry. 2003;42:792–800. PubMed
Brabec V., Leng M. DNA interstrand cross-links of trans-diamminedichloroplatinum(II) are preferentially formed between guanine and complementary cytosine residues. Proc. Natl Acad. Sci. USA. 1993;90:5345–5349. PubMed PMC
Van Beusichem M., Farrell N. Activation of trans geometry in platinum antitumor complexes. Synthesis, characterization and biological activity of complexes with the planar ligands pyridine, N-methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis (thiazole)platinum(II) Inorg. Chem. 1992;31:634–639.
Brabec V., Reedijk J., Leng M. Sequence-dependent distortions induced in DNA by monofunctional platinum(II) binding. Biochemistry. 1992;31:12397–12402. PubMed
Brabec V., Sip M., Leng M. DNA conformational distortion produced by site-specific interstrand cross-link of trans-diamminedichloroplatinum(II) Biochemistry. 1993;32:11676–11681. PubMed
Kasparkova J., Mellish K.J., Qu Y., Brabec V., Farrell N. Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Biochemistry. 1996;35:16705–16713. PubMed
Lemaire M.A., Schwartz A., Rahmouni A.R., Leng M. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum(II) and DNA. Proc. Natl Acad. Sci. USA. 1991;88:1982–1985. PubMed PMC
He Q., Ohndorf U.-A., Lippard S.J. Intercalating residues determine the mode of HMG1 domains A and B binding to cisplatin-modified DNA. Biochemistry. 2000;39:14426–14435. PubMed
Matsunaga T., Mu D., Park C.-H., Reardon J.T., Sancar A. Human DNA repair excision nuclease. J. Biol. Chem. 1995;270:20862–20869. PubMed
Novakova O., Kasparkova J., Bursova V., Hofr C., Vojtiskova M., Chen H., Sadler P.J., Brabec V. Conformation of DNA modified by monofunctional Ru(II) arene complexes: recognition by DNA-binding proteins and repair. Relationship to cytotoxicity. Chem. Biol. 2005;12:121–129. PubMed
Reardon J.T., Vaisman A., Chaney S.G., Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-aceto-ammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res. 1999;59:3968–3971. PubMed
Novakova O., Kasparkova J., Malina J., Natile G., Brabec V. DNA-protein cross-linking by trans-[PtCl2(E-iminoether)2]. A concept for activation of the trans geometry in platinum antitumor complexes. Nucleic Acids Res. 2003;31:6450–6460. PubMed PMC
Kasparkova J., Novakova O., Marini V., Najajreh Y., Gibson D., Perez J.-M., Brabec V. Activation of trans geometry in bifunctional mononuclear platinum complexes by a piperidine ligand: Mechanistic studies on antitumor action. J. Biol. Chem. 2003;278:47516–47525. PubMed
Brabec V. Chemistry and structural biology of 1,2-interstrand adducts of cisplatin. In: Kelland L.R., Farrell N.P., editors. Platinum-Based Drugs in Cancer Therapy. Totowa/NJ: Humana Press Inc; 2000. pp. 37–61.
Rice J.A., Crothers D.M., Pinto A.L., Lippard S.J. The major adduct of the antitumor drug cis-diamminedichloroplatinum(II) with DNA bends the duplex by 40° toward the major groove. Proc. Natl Acad. Sci. USA. 1988;85:4158–4161. PubMed PMC
Bellon S.F., Coleman J.H., Lippard S.J. DNA unwinding produced by site-specific intrastrand cross- links of the antitumor drug cis-diamminedichloroplatinum(II) Biochemistry. 1991;30:8026–8035. PubMed
Koo H.S., Wu H.M., Crothers D.M. DNA bending at adenine.thymine tracts. Nature. 1986;320:501–506. PubMed
Koo H.S., Crothers D.M. Calibration of DNA curvature and a unified description of sequence-directed bending. Proc. Natl Acad. Sci. USA. 1988;85:1763–1767. PubMed PMC
Bellon S.F., Lippard S.J. Bending studies of DNA site-specifically modified by cisplatin, trans-diamminedichloroplatinum(II) and cis-Pt(NH3)2(N3-cytosine)Cl+ Biophys. Chem. 1990;35:179–188. PubMed
Kostrhunova H., Brabec V. Conformational analysis of site-specific DNA cross-links of cisplatin–distamycin conjugates. Biochemistry. 2000;39:12639–12649. PubMed
Huang H.F., Zhu L.M., Reid B.R., Drobny G.P., Hopkins P.B. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science. 1995;270:1842–1845. PubMed
Jamieson E.R., Lippard S.J. Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 1999;99:2467–2498. PubMed
Kartalou M., Essigmann J.M. Recognition of cisplatin adducts by cellular proteins. Mutat. Res. 2001;478:1–21. PubMed
Wei M., Burenkova O., Lippard S.J. Cisplatin sensitivity in Hmgb1−/− and Hmgb1+/+ mouse cells. J. Biol. Chem. 2003;278:1769–1773. PubMed
Ohndorf U.M., Rould M.A., He Q., Pabo C.O., Lippard S.J. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature. 1999;399:708–712. PubMed
Kasparkova J., Delalande O., Stros M., Elizondo-Riojas M.A., Vojtiskova M., Kozelka J., Brabec V. Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein. Biochemistry. 2003;42:1234–1244. PubMed
Malina J., Kasparkova J., Natile G., Brabec V. Recognition of major DNA adducts of enantiomeric cisplatin analogs by HMG box proteins and nucleotide excision repair of these adducts. Chem. Biol. 2002;9:629–638. PubMed
Sancar A. DNA excision repair. Annu. Rev. Biochem. 1996;65:43–81. PubMed
Naegeli H. NY: Springer; 1997. Mechanisms of DNA Damage Recognition In Mammalian Cells. PubMed
Zamble D.B., Mu D., Reardon J.T., Sancar A., Lippard S.J. Repair of cisplatin–DNA adducts by the mammalian excision nuclease. Biochemistry. 1996;35:10004–10013. PubMed
Dalbies R., Payet D., Leng M. DNA double helix promotes a linkage isomerization reaction in trans-diamminedichloroplatinum(II)-modified DNA. Proc. Natl Acad. Sci. USA. 1994;91:8147–8151. PubMed PMC
Kasparkova J., Marini V., Najajreh Y., Gibson D., Brabec V. DNA binding mode of the cis and trans geometries of new antitumor nonclassical platinum complexes containing piperidine, piperazine or 4-picoline ligand in cell-free media. Relations to their activity in cancer cell lines. Biochemistry. 2003;42:6321–6332. PubMed
Suo Z., Lippard S., Johnson K. Single d(GpG)/cis-diammineplatinum(II) adduct-induced inhibition of DNA polymerization. Biochemistry. 1999;38:715–726. PubMed
Johnson K.A. Conformational coupling in DNA-polymerase fidelity. Annu. Rev. Biochem. 1993;62:685–713. PubMed
Hubscher U., Nasheuer H.P., Syvaoja J.E. Eukaryotic DNA polymerases, a growing family. Trends Biochem. Sci. 2000;25:143–147. PubMed
Steitz T.A. DNA polymerases: structural diversity and common mechanisms. J. Biol. Chem. 1999;274:17395–17398. PubMed
Lam W.C., Thompson E.H.Z., Potapova O., Sun X.J.C., Joyce C.M., Millar D.P. 3′-5′ Exonuclease of Klenow fragment: role of amino acid residues within the single-stranded DNA binding region in exonucleolysis and duplex DNA melting. Biochemistry. 2002;41:3943–3951. PubMed
Natile G., Coluccia M. Antitumor active trans-platinum compounds. In: Sigel A., Sigel H., editors. Metal Ions in Biological Systems. Vol. 42. Basel, NY: Marcel Dekker Inc.; 2004. pp. 209–250. PubMed
Perez J.-M., Montero E.I., Quiroga A.G., Fuertes M.A., Alonso C., Navarro-Ranninger C. Cellular uptake, DNA binding and apoptosis induction of cytotoxic trans- [PtCl2(N,N -dimethylamine)(isopropylamine)] in A2780cisR ovarian tumor cells. Metal-Based Drugs. 2001;8:29–37. PubMed PMC
Fojo T., Farrell N., Ortuzar W., Tanimura H., Weinstein J., Myers T.G. Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit. Rev. Oncol. Hematol. 2005;53:25–34. PubMed
Dalbies R., Boudvillain M., Leng M. Linkage isomerization reaction of intrastrand cross-links in trans-diamminedichloroplatinum(II)-modified single-stranded oligonucleotides. Nucleic Acids Res. 1995;23:949–953. PubMed PMC
Leng M., Schwartz A., Giraud-Panis M.J. Transplatin-modified oligonucleotides as potential antitumor drugs. In: Kelland L.R., Farrell N.P., editors. Platinum-Based Drugs in Cancer Therapy. Totowa/NJ: Humana Press Inc.; 2000. pp. 63–85.
Moggs J.G., Szymkowski D.E., Yamada M., Karran P., Wood R.D. Differential human nucleotide excision repair of paired and mispaired cisplatin–DNA adducts. Nucleic Acids Res. 1997;25:480–491. PubMed PMC
Zamble D.B., Lippard S.J. The response of cellular proteins to cisplatin-damaged DNA. In: Lippert B., editor. Cisplatin. Chemistry and Biochemistry of A Leading Anticancer Drug. Zürich, Weinheim: VHCA, WILEY-VCH; 1999. pp. 73–110.
Fichtinger-Schepman A.M.J., Van der Veer J.L., Den Hartog J.H.J., Lohman P.H.M., Reedijk J. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry. 1985;24:707–713. PubMed
Paquet F., Boudvillain M., Lancelot G., Leng M. NMR solution structure of a DNA dodecamer containing a transplatin interstrand GN7-CN3 cross-link. Nucleic Acids Res. 1999;27:4261–4268. PubMed PMC
Malinge J.M., Perez C., Leng M. Base sequence-independent distorsions induced by interstrand cross-links in cis-diaminedichloroplatinum(II)-modified DNA. Nucleic Acids Res. 1994;22:3834–3839. PubMed PMC
Paquet F., Perez C., Leng M., Lancelot G., Malinge J.M. NMR solution structure of a DNA decamer containing an interstrand cross-link of the antitumor drug cis-diamminedichloroplatinum(II) J. Biomol. Struct. Dyn. 1996;14:67–77. PubMed
Kasparkova J., Brabec V. Recognition of DNA interstrand cross-links of cis-diamminedichloroplatinum(II) and its trans isomer by DNA-binding proteins. Biochemistry. 1995;34:12379–12387. PubMed
Conformation of DNA GG intrastrand cross-link of antitumor oxaliplatin and its enantiomeric analog
Mechanism of the formation of DNA-protein cross-links by antitumor cisplatin