Pt-bridges in various single-strand and double-helix DNA sequences. DFT and MP2 study of the cisplatin coordination with guanine, adenine, and cytosine

. 2007 Feb ; 13 (2) : 367-79. [epub] 20060920

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17024406

In this study, various platinum cross-links in DNA bases were explored. Some of these structures occur in many cis/trans-platinated double-helixes or single-stranded adducts. However, in the models studied, no steric hindrance from sugar-phosphate backbone or other surroundings is considered. Such restrictions can change the bonding picture partially but hopefully the basic energy characteristics will not be changed substantially. The optimization of the structures explored was performed at the DFT level with the B3LYP functional and the 6-31G(d) basis set. Perturbation theory at the MP2/6-31++G(2df,2pd) level was used for the single-point energy and 6-31+G(d) basis set for the electron-property analyses. It was found that the most stable structures are the diguanine complexes followed by guanine-cytosine Pt-cross-links, ca 5 kcal mol(-1) less stable. The adenine-containing complexes are about 15 kcal mol(-1) below the stability of diguanine structures. This stability order was also confirmed by the BE of Pt-N bonds. For a detailed view on dative and electrostatic contributions to Pt-N bonds, Natural Population Analysis, determination of electrostatic potentials, and canonical Molecular Orbitals description of the examined systems were used.

Zobrazit více v PubMed

Nucleic Acids Res. 2005 Oct 19;33(18):5819-28 PubMed

Biochem Biophys Res Commun. 2005 Jul 15;332(4):1034-41 PubMed

Nucleic Acids Res. 1997 Feb 15;25(4):896-903 PubMed

Nature. 1999 Jun 17;399(6737):708-12 PubMed

J Chem Phys. 2004 Jan 15;120(3):1253-62 PubMed

J Am Chem Soc. 2002 May 22;124(20):5834-42 PubMed

J Biomol Struct Dyn. 1996 Aug;14(1):67-77 PubMed

Inorg Chem. 2001 Oct 22;40(22):5481-2 PubMed

Science. 1995 Dec 15;270(5243):1842-5 PubMed

J Biol Inorg Chem. 2003 Sep;8(7):741-5 PubMed

Cancer Chemother Pharmacol. 1992;30(1):43-50 PubMed

Inorg Chem. 2003 Nov 3;42(22):7162-72 PubMed

Chemistry. 2002 Mar 1;8(5):1144-50 PubMed

Inorg Chem. 2000 Aug, 7;39(16):3567-71 PubMed

Inorg Chem. 2005 Oct 17;44(21):7644-51 PubMed

EMBO J. 1984 May;3(5):1201-6 PubMed

Nucleic Acids Res. 1993 Dec 25;21(25):5846-51 PubMed

Nucleic Acids Res. 1999 Apr 15;27(8):1837-46 PubMed

Nucleic Acids Res. 1999 Nov 1;27(21):4261-8 PubMed

J Biol Chem. 2002 Dec 20;277(51):49743-9 PubMed

J Biol Inorg Chem. 2000 Jun;5(3):364-8 PubMed

J Biol Inorg Chem. 2005 Nov;10(7):722-31 PubMed

Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed

Chem Rev. 1999 Sep 8;99(9):2467-98 PubMed

Biochemistry. 1995 Nov 28;34(47):15487-95 PubMed

Inorg Chem. 2001 Jan 29;40(3):445-54 PubMed

Nature. 1995 Oct 19;377(6550):649-52 PubMed

Chem Rev. 1999 Sep 8;99(9):2499-510 PubMed

Inorg Chem. 2001 Oct 22;40(22):5596-602 PubMed

J Am Chem Soc. 2005 Nov 16;127(45):15833-42 PubMed

Biochemistry. 1995 Oct 3;34(39):12912-20 PubMed

J Am Chem Soc. 2003 Nov 19;125(46):14082-92 PubMed

Nucleic Acids Res. 1995 Jul 11;23(13):2381-8 PubMed

Drug Resist Updat. 2005 Jun;8(3):131-46 PubMed

Chem Rev. 1999 Sep 8;99(9):2451-66 PubMed

Nature. 1969 Apr 26;222(5191):385-6 PubMed

J Comput Chem. 2005 Jul 15;26(9):907-14 PubMed

J Inorg Biochem. 2005 Nov;99(11):2184-96 PubMed

Biochemistry. 1990 Feb 27;29(8):2102-10 PubMed

Nucleic Acids Res. 1995 Mar 25;23(6):949-53 PubMed

Biochemistry. 1998 Jun 30;37(26):9230-9 PubMed

J Am Chem Soc. 2002 Apr 24;124(16):4495-503 PubMed

Biochemistry. 1997 Mar 11;36(10):2925-31 PubMed

Inorg Chem. 2001 Mar 26;40(7):1496-500 PubMed

J Phys Chem B. 2005 Jun 2;109 (21):11006-15 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...