Carbonyl Reduction of Flubendazole in the Human Liver: Strict Stereospecificity, Sex Difference, Low Risk of Drug Interactions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31191322
PubMed Central
PMC6546852
DOI
10.3389/fphar.2019.00600
Knihovny.cz E-zdroje
- Klíčová slova
- carbonyl reduction, enzyme kinetics, flubendazole, human, sex difference, stereospecificity,
- Publikační typ
- časopisecké články MeSH
Flubendazole (FLU), an anthelmintic drug of benzimidazole type, is now considered a promising anti-cancer agent due to its tubulin binding ability and low system toxicity. The present study was aimed at determining more information about FLU reduction in human liver, because this information has been insufficient until now. Subcellular fractions from the liver of 12 human patients (6 male and 6 female patients) were used to study the stereospecificity, cellular localization, coenzyme preference, enzyme kinetics, and possible inter-individual or sex differences in FLU reduction. In addition, the risk of FLU interaction with other drugs was evaluated. Our study showed that FLU is predominantly reduced in cytosol, and the reduced nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme is preferred. The strict stereospecificity of FLU carbonyl reduction was proven, and carbonyl reductase 1 was identified as the main enzyme of FLU reduction in the human liver. A higher reduction of FLU and a higher level of carbonyl reductase 1 protein were found in male patients than in female patients, but overall inter-individual variability was relatively low. Hepatic intrinsic clearance of FLU is very low, and FLU had no effect on doxorubicin carbonyl reduction in the liver and in cancer cells. All these results fill the gaps in the knowledge of FLU metabolism in human.
Department of Chemistry Faculty of Science University of Hradec Králové Hradec Králové Czechia
Department of Surgery University Hospital Hradec Králové Hradec Králové Czechia
Zobrazit více v PubMed
Arai Y., Endo S., Miyagi N., Abe N., Miura T., Nishinaka T., et al. (2015). Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). Fitoterapia 101, 51–56. 10.1016/j.fitote.2014.12.010 PubMed DOI
Bartikova H., Skalova L., Lamka J., Szotakova B., Varady M. (2010). The effects of flubendazole and its metabolites on the larval development of Haemonchus contortus (Nematoda: Trichostrongylidae): an in vitro study. Helminthologia 47, 269–272. 10.2478/s11687-010-0042-7 DOI
Bousova I., Skalova L., Soucek P., Matouskova P. (2015). The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 47, 520–533. 10.3109/03602532.2015.1089885 PubMed DOI
Canova K., Rozkydalova L., Vokurkova D., Rudolf E. (2018). Flubendazole induces mitotic catastrophe and apoptosis in melanoma cells. Toxicol. In Vitro 46, 313–322. 10.1016/j.tiv.2017.10.025 PubMed DOI
Ceballos L., Alvarez L., Mackenzie C., Geary T., Lanusse C. (2015). Pharmacokinetic comparison of different flubendazole formulations in pigs: a further contribution to its development as a macrofilaricide molecule. Int. J. Parasitol. Drugs Drug Resist. 5, 178–184. 10.1016/j.ijpddr.2015.09.001 PubMed DOI PMC
Geary T. G., Mackenzie C. D., Silber S. A. (2019). Flubendazole as a macrofilaricide: history and background. PLoS Negl. Trop. Dis. 13 (1), e0006436. 10.1371/journal.pntd.0006436 PubMed DOI PMC
Gillette J. R. (1971). “Techniques for studying drug metabolism in vitro,” in Fundamentals of Drug Metabolism and Drug Disposition. Eds. La Du B. N., Mandel H. G., Way E. L. Baltimore, MA, USA: The Williams and Wilkins Company, 400–418.
Gonzalez-Covarrubias V., Kalabus J. L., Blanco J. G. (2008). Inhibition of polymorphic human carbonyl reductase 1 (CBR1) by the cardioprotectant flavonoid 7-monohydroxyethyl rutoside (monoHER). Pharm. Res. 25, 1730–1734. 10.1007/s11095-008-9592-5 PubMed DOI PMC
Hanusova V., Skalova L., Kralova V., Matouskova P. (2015). Potential anti-cancer drugs commonly used for other indications. Curr. Cancer Drug Targets 15, 35–52. 10.2174/1568009615666141229152812 PubMed DOI
Kralova V., Hanusova V., Stankova P., Knoppova K., Canova K., Skalova L. (2013). Antiproliferative effect of benzimidazole anthelmintics albendazole, ricobendazole, and flubendazole in intestinal cancer cell lines. Anticancer Drugs 24, 911–919. 10.1097/CAD.0b013e3283648c69 PubMed DOI
Kralova V., Hanusova V., Rudolf E., Canova K., Skalova L. (2016). Flubendazole induces mitotic catastrophe and senescence in colon cancer cells in vitro . J. Pharm. Pharmacol. 68, 208–218. 10.1111/jphp.12503 PubMed DOI
Kralova V., Hanusova V., Caltova K., Spacek P., Hochmalova M., Skalova L., et al. (2018). Flubendazole and mebendazole impair migration and epithelial to mesenchymal transition in oral cell lines. Chem. Biol. Interact. 293, 124–132. 10.1016/j.cbi.2018.07.026 PubMed DOI
Krizova V., Nobilis M., Pruskova L., Chladek J., Szotakova B., Cvilink V., et al. (2009). Pharmacokinetics of flubendazole and its metabolites in lambs and adult sheep (Ovis aries). J. Vet. Pharmacol. Ther. 32, 606–612. 10.1111/j.1365-2885.2009.01082.x PubMed DOI
Lachau-Durand S., Lammens L., van der Leede B.-j., Van Gompel J., Bailey G., Engelen M., et al. (2019). Preclinical toxicity and pharmacokinetics of a new orally bioavailable flubendazole formulation and the impact for clinical trials and risk/benefit to patients. PLoS Negl. Trop. Dis. 13 (1), e0007026. 10.1371/journal.pntd.0007026 PubMed DOI PMC
Mackenzie C. D., Geary T. G. (2011). Flubendazole: a candidate macrofilaricide for lymphatic filariasis and onchocerciasis field programs. Expert Rev. Anti Infect. Ther. 9, 497–501. 10.1586/eri.11.30 PubMed DOI
Mate L., Virkel G., Lifschitz A., Ballent M., Lanusse C. (2008). Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 76, 773–783. 10.1016/j.bcp.2008.07.002 PubMed DOI
Mate M. L., Geary T., Mackenzie C., Lanusse C., Virkel G. (2017). Species differences in hepatic biotransformation of the anthelmintic drug flubendazole. J. Vet. Pharmacol. Ther. 40, 493–499. 10.1111/jvp.12383 PubMed DOI
Michaelis M., Agha B., Rothweiler F., Loschmann N., Voges Y., Mittelbronn M., et al. (2015). Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen. Sci. Rep. 5, 8202. 10.1038/srep08202 PubMed DOI PMC
Nixon G. L., McEntee L., Johnson A., Farrington N., Whalley S., Livermore J., et al. (2018). Repurposing and reformulation of the antiparasitic agent Flubendazole for treatment of cryptococcal meningoencephalitis, a neglected fungal disease. Antimicrob. Agents Chemother. 62, e01909–e01917. 10.1128/AAC.01909-17 PubMed DOI PMC
Nobilis M., Vybiralova Z., Krizova V., Kubicek V., Soukupova M., Lamka J., et al. (2008). Sensitive chiral high-performance liquid chromatographic determination of anthelmintic flubendazole and its phase I metabolites in blood plasma using UV photodiode-array and fluorescence detection application to pharmacokinetic studies in sheep. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 876, 89–96. 10.1016/j.jchromb.2008.10.032 PubMed DOI
Oh E., Kim Y. J., An H., Sung D., Cho T. M., Farrand L., et al. (2018). Flubendazole elicits anti-metastatic effects in triple-negative breast cancer via STAT3 inhibition. Int. J. Cancer 143, 1978–1993. 10.1002/ijc.31585 PubMed DOI
Shi S. M., Di L. (2017). The role of carbonyl reductase 1 in drug discovery and development. Expert Opin. Drug Metab. Toxicol. 13, 859–870. 10.1080/17425255.2017.1356820 PubMed DOI
Skarka A., Skarydova L., Stambergova H., Wsol V. (2011). Anthracyclines and their metabolism in human liver microsomes and the participation of the new microsomal carbonyl reductase. Chem. Biol. Interact. 191, 66–74. 10.1016/j.cbi.2010.12.016 PubMed DOI
Spagnuolo P. A., Hu J. Y., Hurren R., Wang X. M., Gronda M., Sukhai M. A., et al. (2010). The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood 115, 4824–4833. 10.1182/blood-2009-09-243055 PubMed DOI
Stuchlikova L. R., Kralova V., Lnenickova K., Zarybnicky T., Matouskova P., Hanusova V., et al. (2018). The metabolism of flubendazole in human liver and cancer cell lines. Drug Test. Anal. 10, 1139–1146. 10.1002/dta.2369 PubMed DOI
Virkel G., Mate M. L., Lifschitz A., Ceballos L., Alvarez L. I., Lanusse C. E. (2012). Comparative hepatic metabolism of the anthelmintic flubendazole in rat, swine and sheep. J. Vet. Pharmacol. Ther. 35, 135–136. 10.1111/jvp.12383 DOI
Yadav S., Narasimhan B., Kaur H. (2016). Perspectives of benzimidazole derivatives as anticancer agents in the New Era. Anticancer Agents Med. Chem. 16, 1403–1425. 10.2174/1871520616666151103113412 PubMed DOI