Flubendazole carbonyl reduction in drug-susceptible and drug-resistant strains of the parasitic nematode Haemonchus contortus: changes during the life cycle and possible inhibition
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14581Y
Grantová Agentura České Republiky
GAUK 194421
Univerzita Karlova v Praze
SVV 260 664
Univerzita Karlova v Praze
UNCE/18/SCI/012
Univerzita Karlova v Praze
PubMed
38225645
PubMed Central
PMC10790374
DOI
10.1186/s13567-023-01264-9
PII: 10.1186/s13567-023-01264-9
Knihovny.cz E-zdroje
- Klíčová slova
- Anthelmintics, Strongyloides, drug biotransformation, helminths, inhibitors,
- MeSH
- anthelmintika * farmakologie terapeutické užití MeSH
- Haemonchus * MeSH
- kyselina glycyrhetinová * farmakologie MeSH
- larva MeSH
- mebendazol farmakologie terapeutické užití MeSH
- vitamin K 3 farmakologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthelmintika * MeSH
- flubendazole MeSH Prohlížeč
- kyselina glycyrhetinová * MeSH
- mebendazol MeSH
- vitamin K 3 MeSH
Carbonyl-reducing enzymes (CREs) catalyse the reduction of carbonyl groups in many eobiotic and xenobiotic compounds in all organisms, including helminths. Previous studies have shown the important roles of CREs in the deactivation of several anthelmintic drugs (e.g., flubendazole and mebendazole) in adults infected with the parasitic nematode Haemonchus contortus, in which the activity of a CRE is increased in drug-resistant strains. The aim of the present study was to compare the abilities of nematodes of both a drug-susceptible strain (ISE) and a drug-resistant strain (IRE) to reduce the carbonyl group of flubendazole (FLU) in different developmental stages (eggs, L1/2 larvae, L3 larvae, and adults). In addition, the effects of selected CRE inhibitors (e.g., glycyrrhetinic acid, naringenin, silybin, luteolin, glyceraldehyde, and menadione) on the reduction of FLU were evaluated in vitro and ex vivo in H. contortus adults. The results showed that FLU was reduced by H. contortus in all developmental stages, with adult IRE females being the most metabolically active. Larvae (L1/2 and L3) and adult females of the IRE strain reduced FLU more effectively than those of the ISE strain. Data from the in vitro inhibition study (performed with cytosolic-like fractions of H. contortus adult homogenate) revealed that glycyrrhetinic acid, naringenin, mebendazole and menadione are effective inhibitors of FLU reduction. Ex vivo study data showed that menadione inhibited FLU reduction and also decreased the viability of H. contortus adults to a similar extent. Naringenin and mebendazole were not toxic at the concentrations tested, but they did not inhibit the reduction of FLU in adult worms ex vivo.
Zobrazit více v PubMed
Ruano ZM, Carolino N, Mateus TL. Gastrointestinal parasites as a threat to grazing sheep. Large Anim Rev. 2017;23:231–238.
Lanusse C, Canton C, Virkel G, Alvarez L, Costa L, Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34:664–682. doi: 10.1016/j.pt.2018.05.005. PubMed DOI
Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. In: Gasser RB, Von Samson-Himmelstjerna G, editors. Haemonchus contortus and haemonchosis—past, present and future trends. London: Academic Press; 2016. pp. 397–428. PubMed
Ahuir-Baraja AE, Cibot F, Llobat L, Garijo MM. Anthelmintic resistance: is a solution possible? Exp Parasitol. 2021;230:108169. doi: 10.1016/j.exppara.2021.108169. PubMed DOI
Lanusse CE, Alvarez LI, Lifschitz AL. Gaining insights into the pharmacology of anthelmintics using Haemonchus contortus as a model nematode. In: Gasser RB, Von Samson-Himmelstjerna G, editors. Haemonchus contortus and haemonchosis—past, present and future trends. London: Academic Press; 2016. pp. 465–518. PubMed
Fontaine P, Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist. 2018;8:312–319. doi: 10.1016/j.ijpddr.2018.04.006. PubMed DOI PMC
Matoušková P, Vokřál I, Lamka J, Skálová L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. doi: 10.1016/j.pt.2016.02.004. PubMed DOI
Stuchlíková L, Jirásko R, Vokřál I, Valát M, Lamka J, Szotáková B, Holčapek M, Skálová L. Metabolic pathways of anthelmintic drug monepantel in sheep and in its parasite (Haemonchus contortus) Drug Test Anal. 2014;6:1055–1062. doi: 10.1002/dta.1630. PubMed DOI
Vokřál I, Jirásko R, Stuchlíková L, Bártíková H, Szotáková B, Lamka J, Várady M, Skálová L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet Parasitol. 2013;196:373–381. doi: 10.1016/j.vetpar.2013.03.018. PubMed DOI
Mate ML, Geary T, Mackenzie C, Lanusse C, Virkel G. Species differences in hepatic biotransformation of the anthelmintic drug flubendazole. J Vet Pharmacol Ther. 2017;40:493–499. doi: 10.1111/jvp.12383. PubMed DOI
Virkel G, Mate ML, Lifschitz A, Ceballos L, Alvarez LI, Lanusse CE. Comparative hepatic metabolism of the anthelmintic flubendazole in rat, swine and sheep. J Vet Pharmacol Ther. 2012;35:135–136.
Bartikova H, Skálová L, Lamka J, Szotakova B, Varady M. The effects of flubendazole and its metabolites on the larval development of Haemonchus contortus (Nematoda: Trichostrongylidae): an in vitro study. Helminthologia. 2010;47:269–272. doi: 10.2478/s11687-010-0042-7. DOI
Vokřál I, Bártíková H, Prchal L, Stuchlíková L, Skálová L, Szotáková B, Lamka J, Várady M, Kubíček V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. doi: 10.1017/S0031182012000595. PubMed DOI
Stuchlíková LR, Matoušková P, Vokřál I, Lamka J, Szotáková B, Sečkařová A, Dimunová D, Nguyen LT, Várady M, Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC
Štěrbová K, Rychlá N, Matoušková P, Skálová L, Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet Res. 2023;54:19. doi: 10.1186/s13567-023-01148-y. PubMed DOI PMC
Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int J Parasitol. 2004;34:109–115. doi: 10.1016/j.ijpara.2003.10.002. PubMed DOI
Kellerová P, Raisová Stuchlíková L, Matoušková P, Štěrbová K, Lamka J, Navrátilová M, Vokřál I, Szotáková B, Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet Res. 2020;51:94. doi: 10.1186/s13567-020-00820-x. PubMed DOI PMC
Kellerová P, Navrátilová M, Nguyen LT, Dimunová D, Stuchlíková LR, Skálová L, Matoušková P. UDP-glycosyltransferases and albendazole metabolism in the juvenile stages of Haemonchus contortus. Front Physiol. 2020;11:594116. doi: 10.3389/fphys.2020.594116. PubMed DOI PMC
Bártíková H, Vokřál I, Skálová L, Lamka J, Szotáková B. In vitro oxidative metabolism of xenobiotics in the lancet fluke (Dicrocoelium dendriticum) and the effects of albendazole and albendazole sulphoxide ex vivo. Xenobiotica. 2010;40:593–601. doi: 10.3109/00498254.2010.497565. PubMed DOI
Zajíčková M, Prchal L, Navrátilová M, Vodvárková N, Matoušková P, Vokřál I, Nguyen LT, Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: toxicity, efficacy, and biotransformation. Vet Res. 2021;52:143. doi: 10.1186/s13567-021-01012-x. PubMed DOI PMC
Nguyen LT, Zajíčková M, Mašátová E, Matoušková P, Skálová L. The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet Res. 2021;52:124. doi: 10.1186/s13567-021-00980-4. PubMed DOI PMC
Kotze AC, McClure SJ. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int J Parasitol. 2001;31:1563–1571. doi: 10.1016/S0020-7519(01)00303-4. PubMed DOI
Malatkova P, Wsol V. Carbonyl reduction pathways in drug metabolism. Drug Metab Rev. 2014;46:96–123. doi: 10.3109/03602532.2013.853078. PubMed DOI
Raisová Stuchlíková L, Králová V, Lněničková K, Zárybnický T, Matoušková P, Hanušová V, Ambrož M, Šubrt Z, Skálová L. The metabolism of flubendazole in human liver and cancer cell lines. Drug Test Anal. 2018;10:1139–1146. doi: 10.1002/dta.2369. PubMed DOI
Cvilink V, Kubícek V, Nobilis M, Krízová V, Szotáková B, Lamka J, Várady M, Kubenová M, Novotná R, Gavelová M, Skálová L. Biotransfonnation of flubendazole and selected model xenobiotics in Haemonchus contortus. Vet Parasitol. 2008;151:242–248. doi: 10.1016/j.vetpar.2007.10.010. PubMed DOI
Cvilink V, Skálová L, Szotáková B, Lamka J, Kostiainen R, Ketola RA. LC–MS–MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal Bioanal Chem. 2008;391:337–343. doi: 10.1007/s00216-008-1863-9. PubMed DOI
Shi SM, Di L. The role of carbonyl reductase 1 in drug discovery and development. Expert Opin Drug Metabol Toxicol. 2017;13:859–870. doi: 10.1080/17425255.2017.1356820. PubMed DOI
Ebert B, Ebert D, Koebsch K, Maser E, Kisiela M. Carbonyl reductases from Daphnia are regulated by redox cycling compounds. FEBS J. 2018;285:2869–2887. doi: 10.1111/febs.14578. PubMed DOI
Arai Y, Endo S, Miyagi N, Abe N, Miura T, Nishinaka T, Terada T, Oyama M, Goda H, El-Kabbani O, Hara A, Matsunaga T, Ikari A. Structure–activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1) Fitoterapia. 2015;101:51–56. doi: 10.1016/j.fitote.2014.12.010. PubMed DOI
Bousova I, Skálová L, Soucek P, Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metabol Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI
Alizadeh N, Eskandani M, Tondro K, Rashidi MR, Nazemiyeh H. Inhibitory effects of flavonolignans from Silybum marianum (L.) gaertn (milk thistle) on function of aldehyde oxidase and xanthine oxidase in rats. Lett Drug Design Discov. 2018;15:256–262. doi: 10.2174/1570180814666170420110005. DOI
Robins LI, Dixon SM, Wilson DK, Kurth MJ. On-bead combinatorial techniques for the identification of selective aldose reductase inhibitors. Bioorgan Med Chem. 2006;14:7728–7735. doi: 10.1016/j.bmc.2006.08.005. PubMed DOI
Classen-Houben D, Schuster D, Da Cunha T, Odermatt A, Wolber G, Jordis U, Kueenburg B. Selective inhibition of 11 beta-hydroxysteroid dehydrogenase 1 by 18 alpha-glycyrrhetinic acid but not 18 beta-glycyrrhetinic acid. J Steroid Biochem Mol Biol. 2009;113:248–252. doi: 10.1016/j.jsbmb.2009.01.009. PubMed DOI
Itoda M, Takase N, Nakajin S. Inhibition of 3 alpha/beta,20 beta-hydroxysteroid dehydrogenase by dexamethasone, glycyrrhetinic acid and spironolactone is attenuated by deletion of 12 carboxyl-terminal residues. Biol Pharm Bull. 2002;25:1220–1222. doi: 10.1248/bpb.25.1220. PubMed DOI
Kubíček V, Skálová L, Skarka A, Králová V, Holubová J, Štěpánková J, Šubrt Z, Szotáková B. Carbonyl reduction of flubendazole in the human liver: strict stereospecificity, sex difference, low risk of drug interactions. Front Pharmacol. 2019;10:600. doi: 10.3389/fphar.2019.00600. PubMed DOI PMC
Kren V, Walterová D. Silybin and silymarin–new effects and applications. Biomedical papers of the Medical Faculty of the University Palacký. Olomouc Czech Repub. 2005;149:29–41. PubMed
Biotransformation of anthelmintics in nematodes in relation to drug resistance