The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1568519
Grantová Agentura, Univerzita Karlova
SVV 260 550
Univerzita Karlova v Praze
UNCE18/SCI/012
Univerzita Karlova v Praze
EFSA-CDN [CZ.02.1.01/0.0/0.0/16_019/0000841]
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34593042
PubMed Central
PMC8482649
DOI
10.1186/s13567-021-00980-4
PII: 10.1186/s13567-021-00980-4
Knihovny.cz E-zdroje
- Klíčová slova
- adult worms, anthelmintics, exsheathed third-stage larvae, helminths, levamisole, optimized protocol,
- MeSH
- adenosintrifosfát terapeutické užití MeSH
- diagnostické techniky molekulární přístrojové vybavení veterinární MeSH
- Haemonchus růst a vývoj izolace a purifikace MeSH
- hemonchóza diagnóza parazitologie veterinární MeSH
- larva růst a vývoj MeSH
- luminiscenční měření přístrojové vybavení veterinární MeSH
- nemoci ovcí diagnóza parazitologie MeSH
- ovce domácí MeSH
- ovce MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
The parasitic gastrointestinal nematode Haemonchus contortus causes serious economic losses to agriculture due to infection and disease in small ruminant livestock. The development of new therapies requires appropriate viability testing, with methods nowadays relying on larval motility or development using procedures that involve microscopy. None of the existing biochemical methods, however, are performed in adults, the target stage of the anthelmintic compounds. Here we present a new test for the viability of H. contortus adults and exsheathed third-stage larvae which is based on a bioluminescent assay of ATP content normalized to total protein concentration measured using bicinchoninic acid. All the procedure steps were optimized to achieve maximal sensitivity and robustness. This novel method can be used as a complementary assay for the phenotypic screening of new compounds with potential antinematode activity in exsheathed third-stage larvae and in adult males. Additionally, it might be used for the detection of drug-resistant isolates.
Zobrazit více v PubMed
Charlier J, van der Voort M, Kenyon F, Skuce P, Vercruysse J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014;30:361–367. doi: 10.1016/j.pt.2014.04.009. PubMed DOI
Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC
Zajickova M, Nguyen LT, Skalova L, Raisova Stuchlikova L, Matouskova P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today. 2020;25:430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI
Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Weber SS, Wenger A, Wieland-Berghausen S, Goebel T, Gauvry N, Pautrat F, Skripsky T, Froelich O, Komoin-Oka C, Westlund B, Sluder A, Maser P. A new class of anthelmintics effective against drug-resistant nematodes. Nature. 2008;452:176–180. doi: 10.1038/nature06722. PubMed DOI
Smout MJ, Kotze AC, McCarthy JS, Loukas A. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis. 2010;4:e885. doi: 10.1371/journal.pntd.0000885. PubMed DOI PMC
Preston S, Jabbar A, Nowell C, Joachim A, Ruttkowski B, Cardno T, Hofmann A, Gasser RB. Practical and low cost whole-organism motility assay: a step-by-step protocol. Mol Cell Probes. 2016;30:13–17. doi: 10.1016/j.mcp.2015.08.005. PubMed DOI
Andre WP, Ribeiro WL, Cavalcante GS, dos Santos JM, Macedo IT, de Paula HC, de Freitas RM, de Morais SM, de Melo JV, Bevilaqua CM. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet Parasitol. 2016;218:52–58. doi: 10.1016/j.vetpar.2016.01.001. PubMed DOI
O'Grady J, Kotze AC. Haemonchus contortus: in vitro drug screening assays with the adult life stage. Exp Parasitol. 2004;106:164–172. doi: 10.1016/j.exppara.2004.03.007. PubMed DOI
Adan A, Kiraz Y, Baran Y. Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol. 2016;17:1213–1221. doi: 10.2174/1389201017666160808160513. PubMed DOI
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2004) Cell Viability Assays. In: Markossian S, Sittampalam GS, Grossman A et al. (eds) Assay Guidance Manual. Bethesda (MD)
Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski MR, Pinton P. ATP synthesis and storage. Purinergic Signal. 2012;8:343–357. doi: 10.1007/s11302-012-9305-8. PubMed DOI PMC
Green A, McElroy WD. Function of adenosine triphosphate in the activation of luciferin. Arch Biochem Biophys. 1956;64:257–271. doi: 10.1016/0003-9861(56)90268-5. PubMed DOI
de Graaf IA, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GM. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5:1540–1551. doi: 10.1038/nprot.2010.111. PubMed DOI
Lalli C, Guidi A, Gennari N, Altamura S, Bresciani A, Ruberti G. Development and validation of a luminescence-based, medium-throughput assay for drug screening in Schistosoma mansoni. PLoS Negl Trop Dis. 2015;9:e0003484. doi: 10.1371/journal.pntd.0003484. PubMed DOI PMC
Palikaras K, Tavernarakis N. Intracellular assessment of ATP levels in Caenorhabditis elegans. Bio Protoc. 2016;6:e22048. doi: 10.21769/BioProtoc.2048. PubMed DOI PMC
Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int J Parasitol. 2004;34:109–115. doi: 10.1016/j.ijpara.2003.10.002. PubMed DOI
van Wyk JA, Malan FS. Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet Rec. 1988;123:226–228. doi: 10.1136/vr.123.9.226. PubMed DOI
Preston S, Jabbar A, Nowell C, Joachim A, Ruttkowski B, Baell J, Cardno T, Korhonen PK, Piedrafita D, Ansell BR, Jex AR, Hofmann A, Gasser RB. Low cost whole-organism screening of compounds for anthelmintic activity. Int J Parasitol. 2015;45:333–343. doi: 10.1016/j.ijpara.2015.01.007. PubMed DOI
van Wyk JA, Gerber HM, Groeneveld HT. A technique for the recovery of nematodes from ruminants by migration from gastro-intestinal ingesta gelled in agar: large-scale application. Onderstepoort J Vet Res. 1980;47:147–158. PubMed
Kotze AC, McClure SJ. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int J Parasitol. 2001;31:1563–1571. doi: 10.1016/s0020-7519(01)00303-4. PubMed DOI
Ward PF, Huskisson NS. The energy metabolism of adult Haemonchus contortus, in vitro. Parasitology. 1978;77:255–271. doi: 10.1017/s003118200005023x. PubMed DOI
Harder A. The biochemistry of Haemonchus contortus and other parasitic nematodes. Adv Parasitol. 2016;93:69–94. doi: 10.1016/bs.apar.2016.02.010. PubMed DOI
Kangas L, Gronroos M, Nieminen AL. Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol. 1984;62:338–343. PubMed
Calabrese EJ, Mattson MP. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis. 2017;3:13. doi: 10.1038/s41514-017-0013-z. PubMed DOI PMC
Boulais M, Soudant P, Le Goic N, Quere C, Boudry P, Suquet M. Involvement of mitochondrial activity and OXPHOS in ATP synthesis during the motility phase of spermatozoa in the Pacific oyster, Crassostrea gigas. Biol Reprod. 2015;93:118. doi: 10.1095/biolreprod.115.128538. PubMed DOI
Dilrukshi Herath HMP, Preston S, Hofmann A, Davis RA, Koehler AV, Chang BCH, Jabbar A, Gasser RB. Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol. 2017;244:172–175. doi: 10.1016/j.vetpar.2017.07.005. PubMed DOI
Jiao Y, Preston S, Koehler AV, Stroehlein AJ, Chang BCH, Simpson KJ, Cowley KJ, Palmer MJ, Laleu B, Wells TNC, Jabbar A, Gasser RB. Screening of the ‘Stasis Box’ identifies two kinase inhibitors under pharmaceutical development with activity against Haemonchus contortus. Parasit Vectors. 2017;10:323. doi: 10.1186/s13071-017-2246-x. PubMed DOI PMC
Preston S, Jiao Y, Jabbar A, McGee SL, Laleu B, Willis P, Wells TNC, Gasser RB. Screening of the ‘Pathogen Box’ identifies an approved pesticide with major anthelmintic activity against the barber’s pole worm. Int J Parasitol Drugs Drug Resist. 2016;6:329–334. doi: 10.1016/j.ijpddr.2016.07.004. PubMed DOI PMC
Besier RB, Kahn LP, Sargison ND, Van Wyk JA. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv Parasit. 2016;93:181–238. doi: 10.1016/bs.apar.2016.02.024. PubMed DOI
Kellerova P, Matouskova P, Lamka J, Vokral I, Szotakova B, Zajickova M, Pasak M, Skalova L. Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet Parasitol. 2019;273:24–31. doi: 10.1016/j.vetpar.2019.07.006. PubMed DOI
Stuchlikova LR, Matouskova P, Vokral I, Lamka J, Szotakova B, Seckarova A, Dimunova D, Nguyen LT, Varady M, Skalova L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC
Anthelmintic activity of European fern extracts against Haemonchus contortus