New derivatives of benzhydroxamic acid with nematocidal activity against Haemonchus contortus and Caenorhabditis elegans
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40413827
PubMed Central
PMC12152873
DOI
10.1016/j.ijpddr.2025.100599
PII: S2211-3207(25)00022-3
Knihovny.cz E-zdroje
- Klíčová slova
- Drug development, Drug resistance, Nematodes, New anthelmintics,
- MeSH
- anthelmintika * farmakologie chemie MeSH
- antinematodní látky * farmakologie chemie chemická syntéza MeSH
- Caenorhabditis elegans * účinky léků MeSH
- Haemonchus * účinky léků MeSH
- hemonchóza farmakoterapie parazitologie MeSH
- kyseliny hydroxamové * farmakologie chemie chemická syntéza MeSH
- larva účinky léků MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthelmintika * MeSH
- antinematodní látky * MeSH
- kyseliny hydroxamové * MeSH
Parasitic nematodes cause a wide range of diseases in animals, including humans. However, the efficacy of existing anthelmintic drugs, commonly used to treat these infections, is waning due to the increasing prevalence of drug resistance in nematode populations. This growing challenge underscores the urgent need to discover and develop novel nematocidal drugs that target new molecular pathways. In the present study, 13 novel derivatives of benzhydroxamic acid (OMKs) were designed and synthesized. Their anthelmintic activity was tested in the parasitic nematode Haemonchus contortus (barber's pole worm) and the free-living nematode Caenorhabditis elegans and potential toxicity assessed in mammalian models. Compound OMK211 showed the most promising results. It decreased viability and motility of larval and adult stages of both nematode species and of both drug-sensitive and drug-resistant strains of H. contortus at micromolar concentrations with the highest efficacy in H. contortus adult males (IC50 ∼ 1 μM). Moreover, OMK211 was not toxic in mammalians cells in vitro and in mice in vivo. Consequently, thermal proteome profiling analysis was used to infer the putative molecular target of OMK211 in H. contortus. The results revealed C2-domain containing protein A0A6F7Q0A8, encoded by gene HCON_00184,900, as an interacting partner of OMK211. Using advanced structural prediction and docking tools, this protein is considered an interesting putative molecular target of new nematocidal drugs as its orthologs are present in several nematodes but not in mammals. In conclusion, novel derivatives of benzhydroxamic acid represent a promising new class of potential anthelmintics, which deserve further testing.
Zobrazit více v PubMed
Ahmad N., Khan S.A., Majid H.A., Ali R., Ullah R., Bari A., Akbar N.U., Majid A. Epidemiology and phylogeny of Haemonchus contortus through internal transcribed spacer 2 gene in small ruminants. Front. Vet. Sci. 2024;11 doi: 10.3389/fvets.2024. PubMed DOI PMC
Arsenopoulos K.V., Fthenakis G.C., Katsarou E.I., Papadopoulos E. Haemonchosis: a challenging parasitic infection of sheep and goats. Animals. 2021;11 doi: 10.3390/ani11020363. PubMed DOI PMC
Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Bacteriol. 1951;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. PubMed DOI PMC
Brenner S. Genetics of Caenorhabditis elegans. Genetics (Austin, Tex.) 1974;77(1):71–94. doi: 10.1093/genetics/77.1.71. PubMed DOI PMC
Brinzer R.A., Winter A.D., Page A.P. The relationship between intraflagellar transport and upstream protein trafficking pathways and macrocyclic lactone resistance in Caenorhabditis elegans. G3 (Bethesda) 2024;14(3) doi: 10.1093/g3journal/jkae009. PubMed DOI PMC
Cai E.J., Wu R.Z., Wu Y.H., Gao Y., Zhu Y.P., Li J. A systematic review and meta-analysis on the current status of anthelmintic resistance in equine nematodes: a global perspective. Mol. Biochem. Parasitol. 2024;257 doi: 10.1016/j.molbiopara.2023.111600. PubMed DOI
Davis P., Zarowiecki M., Arnaboldi V., Becerra A., Cain S., Chan J., Chen W.J., Cho J., da Veiga Beltrame E., Diamantakis S., Gao S., Grigoriadis D., Grove C.A., Harris T.W., Kishore R., Le T., Lee R.Y.N., Luypaert M., Müller H.M., Nakamura C., Nuin P., Paulini M., Quinton-Tulloch M., Raciti D., Rodgers F.H., Russell M., Schindelman G., Singh A., Stickland T., Van Auken K., Wang Q., Williams G., Wright A.J., Yook K., Berriman M., Howe K.L., Schedl T., Stein L., Sternberg P.W. WormBase in 2022-data, processes, and tools for analyzing Caenorhabditis elegans. Genetics (Austin, Tex.) 2022;220(4) doi: 10.1093/genetics/iyac003. PubMed DOI PMC
Gasser R.B., Bott N.J., Chilton N.B., Hunt P., Beveridge I. Toward practical, DNA-based diagnostic methods for parasitic nematodes of livestock--bionomic and biotechnological implications. Biotechnol. Adv. 2008;26(4):325–334. doi: 10.1016/j.biotechadv.2008.03.003. PubMed DOI
Hahnel S.R., Dilks C.M., Heisler I., Andersen E.C., Kulke D. Caenorhabditis elegans in anthelmintic research - old model, new perspectives. Int J Parasitol Drugs Drug Resist. 2020;14:237–248. doi: 10.1016/j.ijpddr.2020.09.005. PubMed DOI PMC
Harris G., Wu T., Linfield G., Choi M.K., Liu H., Zhang Y. Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genet. 2019;15(3) doi: 10.1371/journal.pgen.1007706. PubMed DOI PMC
Hughes C.S., Moggridge S., Muller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc. 2019;14(1):68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI
Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992;8(3):275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S.A.A., Ballard A.J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kamalian L., Chadwick A.E., Bayliss M., French N.S., Monshouwer M., Snoeys J., Park B.K. The utility of HepG2 cells to identify direct mitochondrial dysfunction in the absence of cell death. Toxicol. Vitro. 2015;29(4):732–740. doi: 10.1016/j.tiv.2015.02.011. PubMed DOI
Kamath R.S., Fraser A.G., Dong Y., Poulin G., Durbin R., Gotta M., Kanapin A., Le Bot N., Moreno S., Sohrmann M., Welchman D.P., Ziperlen P., Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature. 2003;421(6920):231–237. doi: 10.1038/nature01278. PubMed DOI
Kellerová P., Navrátilová M., Nguyen L.T., Dimunová D., Raisová Stuchlíková L., Štěrbová K., Skálová L., Matoušková P. UDP-Glycosyltransferases and albendazole metabolism in the juvenile stages of Haemonchus contortus. Front. Physiol. 2020;11 doi: 10.3389/fphys.2020.594116. PubMed DOI PMC
Klauck V., Pazinato R., Lopes L.S., Cucco D.C., de Lima H.L., Volpato A., Radavelli W.M., Stefani L.C.M., da Silva A.S. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. Brazil An Acad Bras Cienc. 2014;86(2):777–784. PubMed
Kotze A.C., Prichard R.K. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv. Parasitol. 2016;93:397–428. doi: 10.1016/bs.apar.2016.02.012. PubMed DOI
Kulak N.A., Pichler G., Paron I., Nagaraj N., Mann M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods. 2014;11:319–324. doi: 10.1038/nmeth.2834. PubMed DOI
Kulak N.A., Geyer P.E., Mann M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteomics. 2017;16(4):694–705. doi: 10.1074/mcp.O116.065136. PubMed DOI PMC
Laing R., Kikuchi T., Martinelli A., Tsai I.J., Beech R.N., Redman E., Holroyd N., Bartley D.J., Beasley H., Britton C., Curran D., Devaney E., Gilabert A., Hunt M., Jackson F., Johnston S.L., Kryukov I., Li K., Morrison A.A., Reid A.J., Sargison N., Saunders G.I., Wasmuth J.D., Wolstenholme A., Berriman M., Gilleard J.S., Cotton J.A. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14(8):R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC
Lanusse C., Canton C., Virkel G., Alvarez L., Costa L., Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34(8):664–682. doi: 10.1016/j.pt.2018.05.005. PubMed DOI
Le T.G., Kundu A., Ghoshal A., Nguyen N.H., Preston S., Jiao Y.Q., Ruan B.F., Xue L., Huang F., Keiser J., Hofmann A., Chang B.C.H., Garcia-Bustos J., Jabbar A., Wells T.N.C., Palmer M.J., Gasser R.B., Baell J.B. Optimization of novel 1-methyl-1H pyrazole-5-carboxamides leads to high potency larval development inhibitors of the barber's pole worm. J. Med. Chem. 2018;61(23):10875–10894. doi: 10.1021/acs.jmedchem.8b01544. PubMed DOI
Le T., Žárský V., Nývltová E., Rada P., Harant K., Vancová M., Verner Z., Hrdý I., Tachezy J. Anaerobic peroxisomes in Mastigamoeba balamuthi. roc Natl Acad Sci U S A. 2020;117(4):2065–2075. doi: 10.1073/pnas.1909755117. PubMed DOI PMC
Liu Y., Yang X., Gan J., Chen S., Xiao Z.X., Cao Y. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50(W1):W159–W164. doi: 10.1093/nar/gkac394. PubMed DOI PMC
Mateus A., Kurzawa N., Perrin J., Bergamini G., Savitski M.M. Drug target identification in tissues by thermal proteome profiling. Annu. Rev. Pharmacol. Toxicol. 2022;62:465–482. doi: 10.1146/annurev-pharmtox-052120-013205. PubMed DOI
McRae K.M., McEwan J.C., Dodds K.G., Gemmell N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genom. 2014;15(1):637. doi: 10.1186/1471-2164-15-637. PubMed DOI PMC
Mukherjee A., Kar I., Patra A.K. Understanding anthelmintic resistance in livestock using "omics" approaches. Environ. Sci. Pollut. Res. Int. 2023;30(60):125439–125463. doi: 10.1007/s11356-023-31045-y. PubMed DOI
Ng'etich A.I., Amoah I.D., Bux F., Kumari S. Anthelmintic resistance in soil-transmitted helminths: one-Health considerations. Parasitol. Res. 2024;123(1):62. doi: 10.1007/s00436-023-08088-8. PubMed DOI PMC
Nguyen L.T., Kurz T., Preston S., Brueckmann H., Lungerich B., Herath H., Koehler A.V., Wang T., Skálová L., Jabbar A., Gasser R.B. Phenotypic screening of the "Kurz-box' of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasites Vectors. 2019;12(1):191. doi: 10.1186/s13071-019-3426-7. PubMed DOI PMC
Nguyen L.T., Zajíčková M., Mašátová E., Matoušková P., Skálová L. The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet. Res. 2021;52(1):124. doi: 10.1186/s13567-021-00980-4. PubMed DOI PMC
Packer J.S., Zhu Q., Huynh C., Sivaramakrishnan P., Preston E., Dueck H., Stefanik D., Tan K., Trapnell C., Kim J., Waterston R.H., Murray J.I. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 2019;365(6459):eaax1971. doi: 10.1126/science.aax1971. PubMed DOI PMC
Perrin J., Werner T., Kurzawa N., Rutkowska A., Childs D.D., Kalxdorf M., Poeckel D., Stonehouse E., Strohmer K., Heller B., Thomson D.W., Krause J., Becher I., Eberl H.C., Vappiani J., Sevin D.C., Rau C.E., Franken H., Huber W., Faelth-Savitski M., Savitski M.M., Bantscheff M., Bergamini G. Identifying drug targets in tissues and whole blood with thermal-shift profiling. Nat. Biotechnol. 2020;38(3):303–308. doi: 10.1038/s41587-019-0388-4. PubMed DOI
Piao X.X., Sun M., Yi F.P. Evaluation of nematocidal action against Caenorhabditis elegans of essential oil of flesh fingered citron and its mechanism. J. Chem. 2020;2020:1–9. doi: 10.1155/2020/1740938. DOI
Pramanik A., Anisuzzaman, Islam P., Sachi S., Islam M.Z., Shohana N.N., Rafiq K. Saga of anthelmintic resistance: mechanisms of development, methods of detection and ways of mitigation. Ann. Anim. Sci. 2024 doi: 10.2478/aoas-2024-0118. DOI
Preston S., Jabbar A., Nowell C., Joachim A., Ruttkowski B., Cardno T., Hofmann A., Gasser R.B. Practical and low cost whole-organism motility assay: a step-by-step protocol. Mol. Cell. Probes. 2015;30(1):13–17. doi: 10.1016/j.mcp.2015.08.005. PubMed DOI
Preston S., Jabbar A., Gasser R.B. A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infect. Genet. Evol. 2016;40:368–373. doi: 10.1016/j.meegid.2015.06.029. PubMed DOI
Raisová Stuchlíková L., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., Dimunová D., Nguyen L.T., Várady M., Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. Drugs Drug Resist. 2018;8(1):50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC
Redman E., Packard E., Grillo V., Smith J., Jackson F., Gilleard J.S. Microsatellite analysis reveals marked genetic differentiation between Haemonchus contortus laboratory isolates and provides a rapid system of genetic fingerprinting. Int. J. Parasitol. 2008;38(1):111–122. doi: 10.1016/j.ijpara.2007.06.008. PubMed DOI
Roos M.H., Otsen M., Hoekstra R., Veenstra J.G., Lenstra J.A. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2004;34(1):109–115. doi: 10.1016/j.ijpara.2003.10.002. PubMed DOI
Rychlá N., Navrátilová M., Kohoutová E., Raisová Stuchlíková L., Štěrbová K., Krátký J., Matoušková P., Szotáková B., Skálová L. Flubendazole carbonyl reduction in drug-susceptible and drug-resistant strains of the parasitic nematode Haemonchus contortus: changes during the life cycle and possible inhibition. Vet. Res. 2024;55(1):7. doi: 10.1186/s13567-023-01264-9. PubMed DOI PMC
Sales N., Love S. Resistance of Haemonchus sp. to monepantel and reduced efficacy of a derquantel/abamectin combination confirmed in sheep in NSW, Australia. Vet. Parasitol. 2016;228:193–196. doi: 10.1016/j.vetpar.2016.08.016. PubMed DOI
Salle G., Doyle S.R., Cortet J., Cabaret J., Berriman M., Holroyd N., Cotton J.A. The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nat. Commun. 2019;10(1):4811. doi: 10.1038/s41467-019-12695-4. PubMed DOI PMC
Savitski M.M., Reinhard F.B.M., Franken H., Werner T., Savitski M.F., Eberhard D., Molina D.M., Jafari R., Dovega R.B., Klaeger S., Kuster B., Nordlund P., Bantscheff M., Drewes G. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science. 2014;346(6205) doi: 10.1126/science.1255784. PubMed DOI
Schwarz E.M., Korhonen P.K., Campbell B.E., Young N.D., Jex A.R., Jabbar A., Hall R.S., Mondal A., Howe A.C., Pell J., Hofmann A., Boag P.R., Zhu X.Q., Gregory T., Loukas A., Williams B.A., Antoshechkin I., Brown C., Sternberg P.W., Gasser R.B. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14(8):R89. doi: 10.1186/gb-2013-14-8-r89. PubMed DOI PMC
Shanley H.T., Taki A.C., Nguyen N., Wang T., Byrne J.J., Ang C.S., Leeming M.G., Nie S., Williamson N., Zheng Y.T., Young N.D., Korhonen P.K., Hofmann A., Chang B.C.H., Wells T.N.C., Häberli C., Keiser J., Jabbar A., Sleebs B.E., Gasser R.B. Structure-activity relationship and target investigation of 2-aryl quinolines with nematocidal activity. Int J Parasitol Drugs Drug Resist. 2024;24 doi: 10.1016/j.ijpddr.2024.100522. PubMed DOI PMC
Silverman P.H., Campbell J.A. Studies on parasitic worms of sheep in Scotland. I. Embryonic and larval development of Haemonchus contortus at constant conditions. Parasitology. 1959;49(1–2):23–38. doi: 10.1017/s0031182000026688. PubMed DOI
Sliwka L., Wiktorska K., Suchocki P., Milczarek M., Mielczarek S., Lubelska K., Cierpial T., Lyzwa P., Kielbasinski P., Jaromin A., Flis A., Chilmonczyk Z. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One. 2016;11(5) doi: 10.1371/journal.pone.0155772. PubMed DOI PMC
Štěrbová K., Rychlá N., Matoušková P., Skálová L., Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet. Res. 2023;54(1):19. doi: 10.1186/s13567-023-01148-y. PubMed DOI PMC
Swiss R., Niles A., Cali J.J., Nadanaciva S., Will Y. Validation of a HTS-amenable assay to detect drug-induced mitochondrial toxicity in the absence and presence of cell death. Toxicol. Vitro. 2013;27(6):1789–1797. doi: 10.1016/j.tiv.2013.05.007. PubMed DOI
Taki A.C., Brkljaca R., Wang T., Koehler A.V., Ma G.X., Danne J., Ellis S., Hofmann A., Chang B.C.H., Jabbar A., Urban S., Gasser R.B. Natural compounds from the marine brown alga Caulocystis cephalornithos with potent in vitro-activity against the parasitic nematode Haemonchus contortus. Pathogens. 2020;9(7):550. doi: 10.3390/pathogens9070550. PubMed DOI PMC
Taki A.C., Byrne J.J., Wang T., Sleebs B.E., Nguyen N., Hall R.S., Korhonen P.K., Chang B.C.H., Jackson P., Jabbar A., Gasser R.B. High-throughput phenotypic assay to screen for anthelmintic activity on Haemonchus contortus. Pharmaceuticals. 2021;14(7):616. doi: 10.3390/ph14070616. PubMed DOI PMC
Taki A.C., Wang T., Nguyen N.N., Ang C.S., Leeming M.G., Nie S., Byrne J.J., Young N.D., Zheng Y.T., Ma G.X., Korhonen P.K., Koehler A.V., Williamson N.A., Hofmann A., Chang B.C.H., Haeberli C., Keiser J., Jabbar A., Sleebs B.E., Gasser R.B. Thermal proteome profiling reveals Haemonchus orphan protein HCO_011565 as a target of the nematocidal small molecule UMW-868. Front. Pharmacol. 2022;13 doi: 10.3389/fphar.2022.1014804. PubMed DOI PMC
Taman A., Azab M. Present-day anthelmintics and perspectives on future new targets. Parasitol. Res. 2014;113(7):2425–2433. doi: 10.1007/s00436-014-3969-7. PubMed DOI
Tamura K., Stecher G., Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Tran C.D., Timmins P., Conway B.R., Irwin W.J. Investigation of the coordinated functional activities of cytochrome P450 3A4 and P-glycoprotein in limiting the absorption of xenobiotics in Caco-2 cells. J. Pharmacol. Sci. (Tokyo, Jpn.) 2002;91(1):117–128. doi: 10.1002/jps.1173. PubMed DOI
van Wyk J.A., Malan F.S. Resistance of field strains of Haemonchus contortus to ivermectin, closantel, rafoxanide and the benzimidazoles in South Africa. Vet. Rec. 1988;123(9):226–228. doi: 10.1136/vr.123.9.226. PubMed DOI
Veglia F. The anatomy and life-history of the Haemonchus contortus (Rud.) Rep. Vet. Res. S. Afr. 1915;3/4:349–500.
Wang Y., Yang F., Gritsenko M.A., Wang Y., Clauss T., Liu T., Shen Y., Monroe M.E., Lopez-Ferrer D., Reno T., Moore R.J., Klemke R.L., Camp D.G., 2nd, Smith R.D. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11(10):2019–2026. doi: 10.1002/pmic.201000722. PubMed DOI PMC
Yilmaz E., Ramunke S., Demeler J., Krucken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate. Int J Parasitol Drugs Drug Resist. 2017;7(3):362–369. doi: 10.1016/j.ijpddr.2017.10.001. PubMed DOI PMC
Zajíčková M., Nguyen L.T., Skálová L., Raisová Stuchlíková L., Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov. Today. 2020;25(2):430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI
Zajíčková M., Prchal L., Navrátilová M., Vodvárková N., Matoušková P., Vokřál I., Nguyen L.T., Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: toxicity, efficacy, and biotransformation. Vet. Res. 2021;52(1):143. doi: 10.1186/s13567-021-01012-x. PubMed DOI PMC
Zajíčková M., Prchal L., Vokřál I., Nguyen L.T., Kurz T., Gasser R., Bednářová K., Mičundová M., Lungerich B., Michel O., Skálová L. Assessing the anthelmintic candidates BLK127 and HBK4 for their efficacy on Haemonchus contortus adults and eggs, and their hepatotoxicity and biotransformation. Pharmaceutics. 2022;14(4):754. doi: 10.3390/pharmaceutics14040754. PubMed DOI PMC
Zárybnický T., Matoušková P., Lancošová B., Šubrt Z., Skálová L., Boušová I. Inter-individual variability in acute toxicity of R-pulegone and R-menthofuran in human liver slices and their influence on miRNA expression changes in comparison to Acetaminophen. Int. J. Mol. Sci. 2018;19(6):1805. doi: 10.3390/ijms19061805. PubMed DOI PMC
Zheng Y., Young N.D., Song J., Gasser R.B. The mitogenome of the Haecon-5 strain of Haemonchus contortus and a comparative analysis of its nucleotide variation with other laboratory strains. Int. J. Mol. Sci. 2024;25(16):8765. doi: 10.3390/ijms25168765. PubMed DOI PMC