Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29921785
PubMed Central
PMC6032148
DOI
10.3390/ijms19061805
PII: ijms19061805
Knihovny.cz E-zdroje
- Klíčová slova
- acetaminophen, drug-induced liver injury, menthofuran, microRNA, precision-cut liver slices, pulegone,
- MeSH
- biologické markery metabolismus MeSH
- individuální biologická variabilita * MeSH
- játra účinky léků metabolismus MeSH
- lékové postižení jater epidemiologie metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- monoterpeny s cyklohexanovým kruhem MeSH
- monoterpeny toxicita MeSH
- paracetamol toxicita MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- menthofuran MeSH Prohlížeč
- mikro RNA MeSH
- MIRN155 microRNA, human MeSH Prohlížeč
- monoterpeny s cyklohexanovým kruhem MeSH
- monoterpeny MeSH
- paracetamol MeSH
- pulegone MeSH Prohlížeč
Monoterpenes R-pulegone (PUL) and R-menthofuran (MF), abundant in the Lamiaceae family, are frequently used in herb and food products. Although their hepatotoxicity was shown in rodent species, information about their effects in human liver has been limited. The aim of our study was to test the effects of PUL, MF and acetaminophen (APAP, as a reference compound) on cell viability and microRNA (miRNA) expression in human precision-cut liver slices. Slices from five patients were used to follow up on the inter-individual variability. PUL was toxic in all liver samples (the half-maximal effective concentration was 4.0 µg/mg of tissue), while MF and surprisingly APAP only in two and three liver samples, respectively. PUL also changed miRNA expression more significantly than MF and APAP. The most pronounced effect was a marked decrease of miR-155-5p expression caused by PUL even in non-toxic concentrations in all five liver samples. Our results showed that PUL is much more toxic than MF and APAP in human liver and that miR-155-5p could be a good marker of PUL early hepatotoxicity. Marked inter-individual variabilities in all our results demonstrate the high probability of significant differences in the hepatotoxicity of tested compounds among people.
Zobrazit více v PubMed
Gordon P., Khojasteh S.C. A decades-long investigation of acute metabolism-based hepatotoxicity by herbal constituents: A case study of pennyroyal oil. Drug Metab. Rev. 2015;47:12–20. doi: 10.3109/03602532.2014.990032. PubMed DOI
Phua D.H., Zosel A., Heard K. Dietary supplements and herbal medicine toxicities-when to anticipate them and how to manage them. Int. J. Emerg. Med. 2009;2:69–76. doi: 10.1007/s12245-009-0105-z. PubMed DOI PMC
Gordon W.P., Forte A.J., McMurtry R.J., Gal J., Nelson S.D. Hepatotoxicity and Pulmonary Toxicity of Pennyroyal Oil and Its Constituent Terpenes in the Mouse. Toxicol. Appl. Pharmacol. 1982;65:413–424. doi: 10.1016/0041-008X(82)90387-8. PubMed DOI
Moorthy B., Madyastha P., Madyastha K.M. Hepatotoxicity of pulegone in rats—Its effects on microsomal-enzymes, invivo. Toxicology. 1989;55:327–337. doi: 10.1016/0300-483X(89)90022-X. PubMed DOI
Gordon W.P., Huitric A.C., Seth C.L., McClanahan R.H., Nelson S.D. The Metabolism of the Abortifacient Terpene, (R)-(+)-Pulegone, to a Proximate Toxin, Menthofuran. Drug Metab. Dispos. 1987;15:589–594. PubMed
Olinga P., Schuppan D. Precision-cut liver slices: A tool to model the liver ex vivo. J. Hepatol. 2013;58:1252–1253. doi: 10.1016/j.jhep.2013.01.009. PubMed DOI
Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. doi: 10.1038/nature02871. PubMed DOI
Lin H.X., Ewing L.E., Koturbash I., Gurley B.J., Miousse I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol. 2017;110:229–239. doi: 10.1016/j.fct.2017.10.026. PubMed DOI PMC
Antoine D.J., Dear J.W., Lewis P.S., Platt V., Coyle J., Masson M., Thanacoody R.H., Gray A.J., Webb D.J., Moggs J.G., et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013;58:777–787. doi: 10.1002/hep.26294. PubMed DOI PMC
Xu P., Guo A., Xu J., Yao J., Chen H., Wang F., Zhu C. Evaluation of a combinational use of serum microRNAs as biomarkers for liver diseases. Clin. Res. Hepatol. Gastroenterol. 2017;41:254–261. doi: 10.1016/j.clinre.2016.10.013. PubMed DOI
Wang W.J., Shi Q., Mattes W.B., Mendrick D.L., Yang X. Translating extracellular microRNA into clinical biomarkers for drug-induced toxicity: From high-throughput profiling to validation. Biomark. Med. 2015;9:1177–1188. doi: 10.2217/bmm.15.86. PubMed DOI
Do Amaral A.E., Cisilotto J., Creczynski-Pasa T.B., de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol. Res. 2018;128:274–287. doi: 10.1016/j.phrs.2017.10.002. PubMed DOI
European Medicines Agency (EMA) Public Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran. EMA; Canary Wharf, UK: 2016.
Anderson I.B., Mullen W.H., Meeker J.E., KhojastehBakht S.C., Oishi S., Nelson S.D., Blanc P.D. Pennyroyal toxicity: Measurement of toxic metabolite levels in two cases and review of the literature. Ann. Intern. Med. 1996;124:726–734. doi: 10.7326/0003-4819-124-8-199604150-00004. PubMed DOI
Thomassen D., Slattery J.T., Nelson S.D. Contribution of Menthofuran to the hepatotoxicity of Pulegone—Assessment based on matched area under the curve and on matched time course. J. Pharmacol. Exp. Ther. 1988;244:825–829. PubMed
Mizutani T., Nomura H., Nakanishi K., Fujita S. Effects of Drug-Metabolism Modifiers on Pulegone-Induced Hepatotoxicity in Mice. Res. Commun. Chem. Pathol. Pharmacol. 1987;58:75–83. PubMed
Madyastha K.M., Raj C.P. Effects of menthofuran, a monoterpene furan on rat liver microsomal enzymes, in vivo. Toxicology. 1994;89:119–125. doi: 10.1016/0300-483X(94)90220-8. PubMed DOI
Loosen S.H., Schueller F., Trautwein C., Roy S., Roderburg C. Role of circulating microRNAs in liver diseases. World J. Hepatol. 2017;9:586–594. doi: 10.4254/wjh.v9.i12.586. PubMed DOI PMC
Khojasteh-Bakht S.C., Chen W.Q., Koenigs L.L., Peter R.M., Nelson S.D. Metabolism of (R)-(+)-pulegone and (R)-(+)-menthofuran by human liver cytochrome P-450s: Evidence for formation of a furan epoxide. Drug Metab. Dispos. 1999;27:574–580. PubMed
Khojasteh S.C., Oishi S., Nelson S.D. Metabolism and Toxicity of Menthofuran in Rat Liver Slices and in Rats. Chem. Res. Toxicol. 2010;23:1824–1832. doi: 10.1021/tx100268g. PubMed DOI PMC
Vo L.T., Chan D., King R.G. Investigation of the effects of peppermint oil and valerian on rat liver and cultured human liver cells. Clin. Exp. Pharmacol. Physiol. 2003;30:799–804. doi: 10.1046/j.1440-1681.2003.03912.x. PubMed DOI
Lassila T., Rousu T., Mattila S., Chesne C., Pelkonen O., Turpeinen M., Tolonen A. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes. J. Pharm. Biomed. Anal. 2015;115:345–351. doi: 10.1016/j.jpba.2015.07.020. PubMed DOI
Jemnitz K., Veres Z., Monostory K., Kobori L., Vereczkey L. Interspecies differences in acetaminophen sensitivity of human, rat, and mouse primary hepatocytes. Toxicol. In Vitro. 2008;22:961–967. doi: 10.1016/j.tiv.2008.02.001. PubMed DOI
Hadi M., Dragovic S., van Swelm R., Herpers B., van de Water B., Russel F.G.M., Commandeur J.N.M., Groothuis G.M.M. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver. Arch. Toxicol. 2013;87:155–165. doi: 10.1007/s00204-012-0924-1. PubMed DOI
Jetten M.J.A., Claessen S.M., Dejong C.H.C., Lahoz A., Castell J.V., van Delft J.H.M., Kleinjans J.C.S. Interindividual variation in response to xenobiotic exposure established in precision-cut human liver slices. Toxicology. 2014;323:61–69. doi: 10.1016/j.tox.2014.06.007. PubMed DOI
Vickers A.E.M., Fisher R.L. Evaluation of drug-induced injury and human response in precision-cut tissue slices. Xenobiotica. 2013;43:29–40. doi: 10.3109/00498254.2012.732714. PubMed DOI
Granitzny A., Knebel J., Schaudien D., Braun A., Steinberg P., Dasenbrock C., Hansen T. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound. Toxicol. In Vitro. 2017;42:200–213. doi: 10.1016/j.tiv.2017.05.001. PubMed DOI
Kitamura K., Tokito Y., Dekura E., Kawai Y. Technical Report: Application of Rat Precision-cut Liver Slices for Toxicity Assessment In Vitro. J. Toxicol. Pathol. 1999;12:71. doi: 10.1293/tox.12.71. DOI
Matouskova P., Bartikova H., Bousova I., Hanusova V., Szotakova B., Skalova L. Reference Genes for Real-Time PCR Quantification of Messenger RNAs and MicroRNAs in Mouse Model of Obesity. PLoS ONE. 2014;9:e86033. doi: 10.1371/journal.pone.0086033. PubMed DOI PMC
Schwarzenbach H., da Silva A.M., Calin G., Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015;61:1333–1342. doi: 10.1373/clinchem.2015.239459. PubMed DOI PMC
Matouskova P. microRNAs and Reference Gene Methodology. In: Vinood P., Victor P., editors. Handbook of Nutrition, Diet, and Epigenetics. Springer; Basel, Switzerland: 2017.
Wu C., Zhang J., Cao X., Yang Q., Xia D. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression. Med. Sci. Monit. 2016;22:2685–2690. doi: 10.12659/MSM.896404. PubMed DOI PMC
Chen W.N., Han C., Zhang J.Q., Song K., Wang Y., Wu T. Deletion of Mir155 Prevents Fas-Induced Liver Injury through Up-Regulation of Mcl-1. Am. J. Pathol. 2015;185:1033–1044. doi: 10.1016/j.ajpath.2014.12.020. PubMed DOI PMC
Miller A.M., Gilchrist D.S., Nijjar J., Araldi E., Ramirez C.M., Lavery C.A., Fernandez-Hernando C., McInnes I.B., Kurowska-Stolarska M. MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PLoS ONE. 2013;8:e72324. doi: 10.1371/journal.pone.0072324. PubMed DOI PMC
Lin X.L., Jia J.S., Du T., Li W., Wang X.Y., Wei J.Q., Lin X., Zeng H., Yao L.P., Chen X.B., et al. Overexpression of miR-155 in the Liver of Transgenic Mice Alters the Expression Profiling of Hepatic Genes Associated with Lipid Metabolism. PLoS ONE. 2015;10:e0118417. doi: 10.1371/journal.pone.0118417. PubMed DOI PMC
Bala S., Csak T., Saha B., Zatsiorsky J., Kodys K., Catalano D., Satishchandran A., Szabo G. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J. Hepatol. 2016;64:1378–1387. doi: 10.1016/j.jhep.2016.01.035. PubMed DOI PMC
He W.Z., Guo G.F., Yin C.X., Jiang C., Wang F., Qiu H.J., Chen X.X., Rong R.M., Zhang B., Xia L.P. Gamma-glutamyl transpeptidase level is a novel adverse prognostic indicator in human metastatic colorectal cancer. Colorectal Dis. 2013;15:e443–e452. doi: 10.1111/codi.12258. PubMed DOI
Ciombor K.K., Goff L.W. Current therapy and future directions in biliary tract malignancies. Curr. Treat. Opt. Oncol. 2013;14:337–349. doi: 10.1007/s11864-013-0237-5. PubMed DOI PMC
Hadi M., Westra I.M., Starokozhko V., Dragovic S., Merema M.T., Groothuis G.M. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem. Res. Toxicol. 2013;26:710–720. doi: 10.1021/tx300519p. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Kim K.M., Han C.Y., Kim J.Y., Cho S.S., Kim Y.S., Koo J.H., Lee J.M., Lim S.C., Kang K.W., Kim J.S., et al. Gα(12) overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J. Hepatol. 2018;68:493–504. doi: 10.1016/j.jhep.2017.10.011. PubMed DOI PMC
Song J.N., Bai Z.G., Han W., Zhang J., Meng H., Bi J.T., Ma X.M., Han S.W., Zhang Z.T. Identification of Suitable Reference Genes for qPCR Analysis of Serum microRNA in Gastric Cancer Patients. Dig. Dis. Sci. 2012;57:897–904. doi: 10.1007/s10620-011-1981-7. PubMed DOI
Rinnerthaler G., Hackl H., Gampenrieder S.P., Hamacher F., Hufnagl C., Hauser-Kronberger C., Zehentmayr F., Fastner G., Sedlmayer F., Mlineritsch B., et al. miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites. Int. J. Mol. Sci. 2016;17:E156. doi: 10.3390/ijms17020156. PubMed DOI PMC
Das M.K., Andreassen R., Haugen T.B., Furu K. Identification of Endogenous Controls for Use in miRNA Quantification in Human Cancer Cell Lines. Cancer Genom. Proteom. 2016;13:63–68. PubMed
Wang X.R., Liao Z.J., Bai Z.M., He Y., Duan J., Wei L.Y. MiR-93-5p Promotes Cell Proliferation through Down-Regulating PPARGC1A in Hepatocellular Carcinoma Cells by Bioinformatics Analysis and Experimental Verification. Genes. 2018;9:E51. doi: 10.3390/genes9010051. PubMed DOI PMC
De Conti A., Ortega J.F., Tryndyak V., Dreval K., Moreno F.S., Rusyn I., Beland F.A., Pogribny I.P. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget. 2017;8:88517–88528. doi: 10.18632/oncotarget.19774. PubMed DOI PMC
Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., Persson R., Lindow M., Munk M.E., Kauppinen S., Orum H. Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection. Science. 2010;327:198–201. doi: 10.1126/science.1178178. PubMed DOI PMC
Fan C.G., Wang C.M., Tian C., Wang Y., Li L., Sun W.S., Li R.F., Liu Y.G. miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol. Rep. 2011;26:1281–1286. PubMed
Coulouarn C., Factor V.M., Andersen J.B., Durkin M.E., Thorgeirsson S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28:3526–3536. doi: 10.1038/onc.2009.211. PubMed DOI PMC
Song K., Han C., Zhang J.Q., Lu D.D., Dash S., Feitelson M., Lim K., Wu T. Epigenetic Regulation of MicroRNA-122 by Peroxisome Proliferator Activated Receptor-gamma and Hepatitis B Virus X Protein in Hepatocellular Carcinoma Cells. Hepatology. 2013;58:1681–1692. doi: 10.1002/hep.26514. PubMed DOI PMC
Chen S.S., Chen H., Gao S.S., Qiu S.L., Zhou H., Yu M.X., Tu J.C. Differential expression of plasma microRNA-125b in hepatitis B virus-related liver diseases and diagnostic potential for hepatitis B virus-induced hepatocellular carcinoma. Hepatol. Res. 2017;47:312–320. doi: 10.1111/hepr.12739. PubMed DOI
Giray B.G., Emekdas G., Tezcan S., Ulger M., Serin M.S., Sezgin O., Altintas E., Tiftik E.N. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. Mol. Biol. Rep. 2014;41:4513–4519. doi: 10.1007/s11033-014-3322-3. PubMed DOI
Cheng L., Zhu Y.H., Han H., Zhang Q., Cui K.S., Shen H.S., Zhang J.X., Yan J., Prochownik E., Li Y.J. MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death Dis. 2017;8:e2916. doi: 10.1038/cddis.2017.309. PubMed DOI PMC
Tili E., Michaille J.J., Croce C.M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev. 2013;253:167–184. doi: 10.1111/imr.12050. PubMed DOI
Fu X., Wen H.Q., Jing L., Yang Y.J., Wang W.J., Liang X., Nan K.J., Yao Y., Tian T. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci. 2017;108:620–631. doi: 10.1111/cas.13177. PubMed DOI PMC
Jiang W., Liu G., Tang W. MicroRNA-182-5p Ameliorates Liver Ischemia-Reperfusion Injury by Suppressing Toll-Like Receptor 4. Transplant. Proc. 2016;48:2809–2814. doi: 10.1016/j.transproceed.2016.06.043. PubMed DOI
Wang J., Li J.W., Shen J.L., Wang C., Yang L.L., Zhang X.W. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer. 2012;12:227. doi: 10.1186/1471-2407-12-227. PubMed DOI PMC
Assal R.A., Tayebi H.M.E., Hosny K.A., Esmat G., Abdelaziz A.I. A pleiotropic effect of the single clustered hepatic metastamiRs miR-96-5p and miR-182-5p on insulin-like growth factor II, insulin-like growth factor-1 receptor and insulin-like growth factor-binding protein-3 in hepatocellular carcinoma. Mol. Med. Rep. 2015;12:645–650. doi: 10.3892/mmr.2015.3382. PubMed DOI
Krattinger R., Bostrom A., Schioth H.B., Thasler W.E., Mwinyi J., Kullak-Ublick G.A. microRNA-192 suppresses the expression of the farnesoid X receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G1044–G1051. doi: 10.1152/ajpgi.00297.2015. PubMed DOI
Raitoharju E., Seppala I., Lyytikainen L.P., Viikari J., Ala-Korpela M., Soininen P., Kangas A.J., Waldenberger M., Klopp N., Illig T., et al. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism—The Young Finns Study. Sci. Rep. 2016;6:38262. doi: 10.1038/srep38262. PubMed DOI PMC
Vliegenthart A.D.B., Shaffer J.M., Clarke J.I., Peeters L.E.J., Caporali A., Bateman D.N., Wood D.M., Dargan P.I., Craig D.G., Moore J.K., et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci. Rep. 2015;5:15501. doi: 10.1038/srep15501. PubMed DOI PMC
Gui J.H., Tian Y.P., Wen X.Y., Zhang W.H., Zhang P.J., Gao J., Run W., Tian L.Y., Jia X.W., Gao Y.H. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin. Sci. 2011;120:183–193. doi: 10.1042/CS20100297. PubMed DOI PMC
Zhang Z.H., Yin J., Yang J., Shen W.Z., Zhang C.Y., Mou W.J., Luo J.H., Yan H., Sun P.Q., Luo Y.P., et al. miR-885-5p suppresses hepatocellular carcinoma metastasis and inhibits Wnt/beta-catenin signaling pathway. Oncotarget. 2016;7:75038–75051. PubMed PMC
Lou G., Ma N., Xu Y., Jiang L., Yang J., Wang C.X., Jiao Y.F., Gao X. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int. J. Mol. Med. 2015;36:1400–1408. doi: 10.3892/ijmm.2015.2338. PubMed DOI
Anthelmintic activity of European fern extracts against Haemonchus contortus