Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen

. 2018 Jun 19 ; 19 (6) : . [epub] 20180619

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29921785

Monoterpenes R-pulegone (PUL) and R-menthofuran (MF), abundant in the Lamiaceae family, are frequently used in herb and food products. Although their hepatotoxicity was shown in rodent species, information about their effects in human liver has been limited. The aim of our study was to test the effects of PUL, MF and acetaminophen (APAP, as a reference compound) on cell viability and microRNA (miRNA) expression in human precision-cut liver slices. Slices from five patients were used to follow up on the inter-individual variability. PUL was toxic in all liver samples (the half-maximal effective concentration was 4.0 µg/mg of tissue), while MF and surprisingly APAP only in two and three liver samples, respectively. PUL also changed miRNA expression more significantly than MF and APAP. The most pronounced effect was a marked decrease of miR-155-5p expression caused by PUL even in non-toxic concentrations in all five liver samples. Our results showed that PUL is much more toxic than MF and APAP in human liver and that miR-155-5p could be a good marker of PUL early hepatotoxicity. Marked inter-individual variabilities in all our results demonstrate the high probability of significant differences in the hepatotoxicity of tested compounds among people.

Zobrazit více v PubMed

Gordon P., Khojasteh S.C. A decades-long investigation of acute metabolism-based hepatotoxicity by herbal constituents: A case study of pennyroyal oil. Drug Metab. Rev. 2015;47:12–20. doi: 10.3109/03602532.2014.990032. PubMed DOI

Phua D.H., Zosel A., Heard K. Dietary supplements and herbal medicine toxicities-when to anticipate them and how to manage them. Int. J. Emerg. Med. 2009;2:69–76. doi: 10.1007/s12245-009-0105-z. PubMed DOI PMC

Gordon W.P., Forte A.J., McMurtry R.J., Gal J., Nelson S.D. Hepatotoxicity and Pulmonary Toxicity of Pennyroyal Oil and Its Constituent Terpenes in the Mouse. Toxicol. Appl. Pharmacol. 1982;65:413–424. doi: 10.1016/0041-008X(82)90387-8. PubMed DOI

Moorthy B., Madyastha P., Madyastha K.M. Hepatotoxicity of pulegone in rats—Its effects on microsomal-enzymes, invivo. Toxicology. 1989;55:327–337. doi: 10.1016/0300-483X(89)90022-X. PubMed DOI

Gordon W.P., Huitric A.C., Seth C.L., McClanahan R.H., Nelson S.D. The Metabolism of the Abortifacient Terpene, (R)-(+)-Pulegone, to a Proximate Toxin, Menthofuran. Drug Metab. Dispos. 1987;15:589–594. PubMed

Olinga P., Schuppan D. Precision-cut liver slices: A tool to model the liver ex vivo. J. Hepatol. 2013;58:1252–1253. doi: 10.1016/j.jhep.2013.01.009. PubMed DOI

Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. doi: 10.1038/nature02871. PubMed DOI

Lin H.X., Ewing L.E., Koturbash I., Gurley B.J., Miousse I.R. MicroRNAs as biomarkers for liver injury: Current knowledge, challenges and future prospects. Food Chem. Toxicol. 2017;110:229–239. doi: 10.1016/j.fct.2017.10.026. PubMed DOI PMC

Antoine D.J., Dear J.W., Lewis P.S., Platt V., Coyle J., Masson M., Thanacoody R.H., Gray A.J., Webb D.J., Moggs J.G., et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013;58:777–787. doi: 10.1002/hep.26294. PubMed DOI PMC

Xu P., Guo A., Xu J., Yao J., Chen H., Wang F., Zhu C. Evaluation of a combinational use of serum microRNAs as biomarkers for liver diseases. Clin. Res. Hepatol. Gastroenterol. 2017;41:254–261. doi: 10.1016/j.clinre.2016.10.013. PubMed DOI

Wang W.J., Shi Q., Mattes W.B., Mendrick D.L., Yang X. Translating extracellular microRNA into clinical biomarkers for drug-induced toxicity: From high-throughput profiling to validation. Biomark. Med. 2015;9:1177–1188. doi: 10.2217/bmm.15.86. PubMed DOI

Do Amaral A.E., Cisilotto J., Creczynski-Pasa T.B., de Lucca Schiavon L. Circulating miRNAs in nontumoral liver diseases. Pharmacol. Res. 2018;128:274–287. doi: 10.1016/j.phrs.2017.10.002. PubMed DOI

European Medicines Agency (EMA) Public Statement on the Use of Herbal Medicinal Products Containing Pulegone and Menthofuran. EMA; Canary Wharf, UK: 2016.

Anderson I.B., Mullen W.H., Meeker J.E., KhojastehBakht S.C., Oishi S., Nelson S.D., Blanc P.D. Pennyroyal toxicity: Measurement of toxic metabolite levels in two cases and review of the literature. Ann. Intern. Med. 1996;124:726–734. doi: 10.7326/0003-4819-124-8-199604150-00004. PubMed DOI

Thomassen D., Slattery J.T., Nelson S.D. Contribution of Menthofuran to the hepatotoxicity of Pulegone—Assessment based on matched area under the curve and on matched time course. J. Pharmacol. Exp. Ther. 1988;244:825–829. PubMed

Mizutani T., Nomura H., Nakanishi K., Fujita S. Effects of Drug-Metabolism Modifiers on Pulegone-Induced Hepatotoxicity in Mice. Res. Commun. Chem. Pathol. Pharmacol. 1987;58:75–83. PubMed

Madyastha K.M., Raj C.P. Effects of menthofuran, a monoterpene furan on rat liver microsomal enzymes, in vivo. Toxicology. 1994;89:119–125. doi: 10.1016/0300-483X(94)90220-8. PubMed DOI

Loosen S.H., Schueller F., Trautwein C., Roy S., Roderburg C. Role of circulating microRNAs in liver diseases. World J. Hepatol. 2017;9:586–594. doi: 10.4254/wjh.v9.i12.586. PubMed DOI PMC

Khojasteh-Bakht S.C., Chen W.Q., Koenigs L.L., Peter R.M., Nelson S.D. Metabolism of (R)-(+)-pulegone and (R)-(+)-menthofuran by human liver cytochrome P-450s: Evidence for formation of a furan epoxide. Drug Metab. Dispos. 1999;27:574–580. PubMed

Khojasteh S.C., Oishi S., Nelson S.D. Metabolism and Toxicity of Menthofuran in Rat Liver Slices and in Rats. Chem. Res. Toxicol. 2010;23:1824–1832. doi: 10.1021/tx100268g. PubMed DOI PMC

Vo L.T., Chan D., King R.G. Investigation of the effects of peppermint oil and valerian on rat liver and cultured human liver cells. Clin. Exp. Pharmacol. Physiol. 2003;30:799–804. doi: 10.1046/j.1440-1681.2003.03912.x. PubMed DOI

Lassila T., Rousu T., Mattila S., Chesne C., Pelkonen O., Turpeinen M., Tolonen A. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes. J. Pharm. Biomed. Anal. 2015;115:345–351. doi: 10.1016/j.jpba.2015.07.020. PubMed DOI

Jemnitz K., Veres Z., Monostory K., Kobori L., Vereczkey L. Interspecies differences in acetaminophen sensitivity of human, rat, and mouse primary hepatocytes. Toxicol. In Vitro. 2008;22:961–967. doi: 10.1016/j.tiv.2008.02.001. PubMed DOI

Hadi M., Dragovic S., van Swelm R., Herpers B., van de Water B., Russel F.G.M., Commandeur J.N.M., Groothuis G.M.M. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver. Arch. Toxicol. 2013;87:155–165. doi: 10.1007/s00204-012-0924-1. PubMed DOI

Jetten M.J.A., Claessen S.M., Dejong C.H.C., Lahoz A., Castell J.V., van Delft J.H.M., Kleinjans J.C.S. Interindividual variation in response to xenobiotic exposure established in precision-cut human liver slices. Toxicology. 2014;323:61–69. doi: 10.1016/j.tox.2014.06.007. PubMed DOI

Vickers A.E.M., Fisher R.L. Evaluation of drug-induced injury and human response in precision-cut tissue slices. Xenobiotica. 2013;43:29–40. doi: 10.3109/00498254.2012.732714. PubMed DOI

Granitzny A., Knebel J., Schaudien D., Braun A., Steinberg P., Dasenbrock C., Hansen T. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound. Toxicol. In Vitro. 2017;42:200–213. doi: 10.1016/j.tiv.2017.05.001. PubMed DOI

Kitamura K., Tokito Y., Dekura E., Kawai Y. Technical Report: Application of Rat Precision-cut Liver Slices for Toxicity Assessment In Vitro. J. Toxicol. Pathol. 1999;12:71. doi: 10.1293/tox.12.71. DOI

Matouskova P., Bartikova H., Bousova I., Hanusova V., Szotakova B., Skalova L. Reference Genes for Real-Time PCR Quantification of Messenger RNAs and MicroRNAs in Mouse Model of Obesity. PLoS ONE. 2014;9:e86033. doi: 10.1371/journal.pone.0086033. PubMed DOI PMC

Schwarzenbach H., da Silva A.M., Calin G., Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015;61:1333–1342. doi: 10.1373/clinchem.2015.239459. PubMed DOI PMC

Matouskova P. microRNAs and Reference Gene Methodology. In: Vinood P., Victor P., editors. Handbook of Nutrition, Diet, and Epigenetics. Springer; Basel, Switzerland: 2017.

Wu C., Zhang J., Cao X., Yang Q., Xia D. Effect of Mir-122 on Human Cholangiocarcinoma Proliferation, Invasion, and Apoptosis Through P53 Expression. Med. Sci. Monit. 2016;22:2685–2690. doi: 10.12659/MSM.896404. PubMed DOI PMC

Chen W.N., Han C., Zhang J.Q., Song K., Wang Y., Wu T. Deletion of Mir155 Prevents Fas-Induced Liver Injury through Up-Regulation of Mcl-1. Am. J. Pathol. 2015;185:1033–1044. doi: 10.1016/j.ajpath.2014.12.020. PubMed DOI PMC

Miller A.M., Gilchrist D.S., Nijjar J., Araldi E., Ramirez C.M., Lavery C.A., Fernandez-Hernando C., McInnes I.B., Kurowska-Stolarska M. MiR-155 Has a Protective Role in the Development of Non-Alcoholic Hepatosteatosis in Mice. PLoS ONE. 2013;8:e72324. doi: 10.1371/journal.pone.0072324. PubMed DOI PMC

Lin X.L., Jia J.S., Du T., Li W., Wang X.Y., Wei J.Q., Lin X., Zeng H., Yao L.P., Chen X.B., et al. Overexpression of miR-155 in the Liver of Transgenic Mice Alters the Expression Profiling of Hepatic Genes Associated with Lipid Metabolism. PLoS ONE. 2015;10:e0118417. doi: 10.1371/journal.pone.0118417. PubMed DOI PMC

Bala S., Csak T., Saha B., Zatsiorsky J., Kodys K., Catalano D., Satishchandran A., Szabo G. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J. Hepatol. 2016;64:1378–1387. doi: 10.1016/j.jhep.2016.01.035. PubMed DOI PMC

He W.Z., Guo G.F., Yin C.X., Jiang C., Wang F., Qiu H.J., Chen X.X., Rong R.M., Zhang B., Xia L.P. Gamma-glutamyl transpeptidase level is a novel adverse prognostic indicator in human metastatic colorectal cancer. Colorectal Dis. 2013;15:e443–e452. doi: 10.1111/codi.12258. PubMed DOI

Ciombor K.K., Goff L.W. Current therapy and future directions in biliary tract malignancies. Curr. Treat. Opt. Oncol. 2013;14:337–349. doi: 10.1007/s11864-013-0237-5. PubMed DOI PMC

Hadi M., Westra I.M., Starokozhko V., Dragovic S., Merema M.T., Groothuis G.M. Human precision-cut liver slices as an ex vivo model to study idiosyncratic drug-induced liver injury. Chem. Res. Toxicol. 2013;26:710–720. doi: 10.1021/tx300519p. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Kim K.M., Han C.Y., Kim J.Y., Cho S.S., Kim Y.S., Koo J.H., Lee J.M., Lim S.C., Kang K.W., Kim J.S., et al. Gα(12) overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J. Hepatol. 2018;68:493–504. doi: 10.1016/j.jhep.2017.10.011. PubMed DOI PMC

Song J.N., Bai Z.G., Han W., Zhang J., Meng H., Bi J.T., Ma X.M., Han S.W., Zhang Z.T. Identification of Suitable Reference Genes for qPCR Analysis of Serum microRNA in Gastric Cancer Patients. Dig. Dis. Sci. 2012;57:897–904. doi: 10.1007/s10620-011-1981-7. PubMed DOI

Rinnerthaler G., Hackl H., Gampenrieder S.P., Hamacher F., Hufnagl C., Hauser-Kronberger C., Zehentmayr F., Fastner G., Sedlmayer F., Mlineritsch B., et al. miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites. Int. J. Mol. Sci. 2016;17:E156. doi: 10.3390/ijms17020156. PubMed DOI PMC

Das M.K., Andreassen R., Haugen T.B., Furu K. Identification of Endogenous Controls for Use in miRNA Quantification in Human Cancer Cell Lines. Cancer Genom. Proteom. 2016;13:63–68. PubMed

Wang X.R., Liao Z.J., Bai Z.M., He Y., Duan J., Wei L.Y. MiR-93-5p Promotes Cell Proliferation through Down-Regulating PPARGC1A in Hepatocellular Carcinoma Cells by Bioinformatics Analysis and Experimental Verification. Genes. 2018;9:E51. doi: 10.3390/genes9010051. PubMed DOI PMC

De Conti A., Ortega J.F., Tryndyak V., Dreval K., Moreno F.S., Rusyn I., Beland F.A., Pogribny I.P. MicroRNA deregulation in nonalcoholic steatohepatitis-associated liver carcinogenesis. Oncotarget. 2017;8:88517–88528. doi: 10.18632/oncotarget.19774. PubMed DOI PMC

Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., Persson R., Lindow M., Munk M.E., Kauppinen S., Orum H. Therapeutic Silencing of MicroRNA-122 in Primates with Chronic Hepatitis C Virus Infection. Science. 2010;327:198–201. doi: 10.1126/science.1178178. PubMed DOI PMC

Fan C.G., Wang C.M., Tian C., Wang Y., Li L., Sun W.S., Li R.F., Liu Y.G. miR-122 inhibits viral replication and cell proliferation in hepatitis B virus-related hepatocellular carcinoma and targets NDRG3. Oncol. Rep. 2011;26:1281–1286. PubMed

Coulouarn C., Factor V.M., Andersen J.B., Durkin M.E., Thorgeirsson S.S. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28:3526–3536. doi: 10.1038/onc.2009.211. PubMed DOI PMC

Song K., Han C., Zhang J.Q., Lu D.D., Dash S., Feitelson M., Lim K., Wu T. Epigenetic Regulation of MicroRNA-122 by Peroxisome Proliferator Activated Receptor-gamma and Hepatitis B Virus X Protein in Hepatocellular Carcinoma Cells. Hepatology. 2013;58:1681–1692. doi: 10.1002/hep.26514. PubMed DOI PMC

Chen S.S., Chen H., Gao S.S., Qiu S.L., Zhou H., Yu M.X., Tu J.C. Differential expression of plasma microRNA-125b in hepatitis B virus-related liver diseases and diagnostic potential for hepatitis B virus-induced hepatocellular carcinoma. Hepatol. Res. 2017;47:312–320. doi: 10.1111/hepr.12739. PubMed DOI

Giray B.G., Emekdas G., Tezcan S., Ulger M., Serin M.S., Sezgin O., Altintas E., Tiftik E.N. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. Mol. Biol. Rep. 2014;41:4513–4519. doi: 10.1007/s11033-014-3322-3. PubMed DOI

Cheng L., Zhu Y.H., Han H., Zhang Q., Cui K.S., Shen H.S., Zhang J.X., Yan J., Prochownik E., Li Y.J. MicroRNA-148a deficiency promotes hepatic lipid metabolism and hepatocarcinogenesis in mice. Cell Death Dis. 2017;8:e2916. doi: 10.1038/cddis.2017.309. PubMed DOI PMC

Tili E., Michaille J.J., Croce C.M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol. Rev. 2013;253:167–184. doi: 10.1111/imr.12050. PubMed DOI

Fu X., Wen H.Q., Jing L., Yang Y.J., Wang W.J., Liang X., Nan K.J., Yao Y., Tian T. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci. 2017;108:620–631. doi: 10.1111/cas.13177. PubMed DOI PMC

Jiang W., Liu G., Tang W. MicroRNA-182-5p Ameliorates Liver Ischemia-Reperfusion Injury by Suppressing Toll-Like Receptor 4. Transplant. Proc. 2016;48:2809–2814. doi: 10.1016/j.transproceed.2016.06.043. PubMed DOI

Wang J., Li J.W., Shen J.L., Wang C., Yang L.L., Zhang X.W. MicroRNA-182 downregulates metastasis suppressor 1 and contributes to metastasis of hepatocellular carcinoma. BMC Cancer. 2012;12:227. doi: 10.1186/1471-2407-12-227. PubMed DOI PMC

Assal R.A., Tayebi H.M.E., Hosny K.A., Esmat G., Abdelaziz A.I. A pleiotropic effect of the single clustered hepatic metastamiRs miR-96-5p and miR-182-5p on insulin-like growth factor II, insulin-like growth factor-1 receptor and insulin-like growth factor-binding protein-3 in hepatocellular carcinoma. Mol. Med. Rep. 2015;12:645–650. doi: 10.3892/mmr.2015.3382. PubMed DOI

Krattinger R., Bostrom A., Schioth H.B., Thasler W.E., Mwinyi J., Kullak-Ublick G.A. microRNA-192 suppresses the expression of the farnesoid X receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;310:G1044–G1051. doi: 10.1152/ajpgi.00297.2015. PubMed DOI

Raitoharju E., Seppala I., Lyytikainen L.P., Viikari J., Ala-Korpela M., Soininen P., Kangas A.J., Waldenberger M., Klopp N., Illig T., et al. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism—The Young Finns Study. Sci. Rep. 2016;6:38262. doi: 10.1038/srep38262. PubMed DOI PMC

Vliegenthart A.D.B., Shaffer J.M., Clarke J.I., Peeters L.E.J., Caporali A., Bateman D.N., Wood D.M., Dargan P.I., Craig D.G., Moore J.K., et al. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci. Rep. 2015;5:15501. doi: 10.1038/srep15501. PubMed DOI PMC

Gui J.H., Tian Y.P., Wen X.Y., Zhang W.H., Zhang P.J., Gao J., Run W., Tian L.Y., Jia X.W., Gao Y.H. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin. Sci. 2011;120:183–193. doi: 10.1042/CS20100297. PubMed DOI PMC

Zhang Z.H., Yin J., Yang J., Shen W.Z., Zhang C.Y., Mou W.J., Luo J.H., Yan H., Sun P.Q., Luo Y.P., et al. miR-885-5p suppresses hepatocellular carcinoma metastasis and inhibits Wnt/beta-catenin signaling pathway. Oncotarget. 2016;7:75038–75051. PubMed PMC

Lou G., Ma N., Xu Y., Jiang L., Yang J., Wang C.X., Jiao Y.F., Gao X. Differential distribution of U6 (RNU6-1) expression in human carcinoma tissues demonstrates the requirement for caution in the internal control gene selection for microRNA quantification. Int. J. Mol. Med. 2015;36:1400–1408. doi: 10.3892/ijmm.2015.2338. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace