The Selection and Validation of Reference Genes for mRNA and microRNA Expression Studies in Human Liver Slices Using RT-qPCR

. 2019 Sep 28 ; 10 (10) : . [epub] 20190928

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31569378

The selection of a suitable combination of reference genes (RGs) for data normalization is a crucial step for obtaining reliable and reproducible results from transcriptional response analysis using a reverse transcription-quantitative polymerase chain reaction. This is especially so if a three-dimensional multicellular model prepared from liver tissues originating from biologically diverse human individuals is used. The mRNA and miRNA RGs stability were studied in thirty-five human liver tissue samples and twelve precision-cut human liver slices (PCLS) treated for 24 h with dimethyl sulfoxide (controls) and PCLS treated with β-naphthoflavone (10 µM) or rifampicin (10 µM) as cytochrome P450 (CYP) inducers. Validation of RGs was performed by an expression analysis of CYP3A4 and CYP1A2 on rifampicin and β-naphthoflavone induction, respectively. Regarding mRNA, the best combination of RGs for the controls was YWHAZ and B2M, while YWHAZ and ACTB were selected for the liver samples and treated PCLS. Stability of all candidate miRNA RGs was comparable or better than that of generally used short non-coding RNA U6. The best combination for the control PCLS was miR-16-5p and miR-152-3p, in contrast to the miR-16-5b and miR-23b-3p selected for the treated PCLS. Our results showed that the candidate RGs were rather stable, especially for miRNA in human PCLS.

Zobrazit více v PubMed

Fisher R.L., Vickers A.E.M. Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica. 2013;43:8–14. doi: 10.3109/00498254.2012.728013. PubMed DOI

Olinga P., Hof I.H., Merema M.T., Smit M., de Jager M.H., Swart P.J., Slooff M.J.H., Meijer D.K.F., Groothuis G.M.M. The applicability of rat and human liver slices to the study of mechanisms of hepatic drug uptake. J. Pharmacol. Toxicol. Methods. 2001;45:55–63. doi: 10.1016/S1056-8719(01)00127-7. PubMed DOI

Vickers A.E.M., Ulyanov A.V., Fisher R.L. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices. Int. J. Mol. Sci. 2017;18:33. doi: 10.3390/ijms18030574. PubMed DOI PMC

Zarybnicky T., Matouskova P., Lancosova B., Subrt Z., Skalova L., Bousova I. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen. Int. J. Mol. Sci. 2018;19:17. doi: 10.3390/ijms19061805. PubMed DOI PMC

Rius B., Titos E., Moran-Salvador E., Lopez-Vicario C., Garcia-Alonso V., Gonzalez-Periz A., Arroyo V., Claria J. Resolvin D1 primes the resolution process initiated by calorie restriction in obesity-induced steatohepatitis. Faseb J. 2014;28:836–848. doi: 10.1096/fj.13-235614. PubMed DOI

Rius B., Duran-Guell M., Flores-Costa R., Lopez-Vicario C., Lopategi A., Alcaraz-Quiles J., Casulleras M., Lozano J.J., Titos E., Claria J. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. Faseb J. 2017;31:5384–5398. doi: 10.1096/fj.201700394R. PubMed DOI

Wu X., Roberto J.B., Knupp A., Kenerson H.L., Truong C.D., Yuen S.Y., Brempelis K.J., Tuefferd M., Chen A., Horton H., et al. Precision-cut human liver slice cultures as an immunological platform. J. Immunol. Methods. 2018;455:71–79. doi: 10.1016/j.jim.2018.01.012. PubMed DOI PMC

Elferink M.G.L., Olinga P., Draaisma A.L., Merema M.T., Bauerschmidt S., Polman J., Schoonen W.G., Groothuis G.M.M. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity. Toxicol. Appl. Pharmacol. 2008;229:300–309. doi: 10.1016/j.taap.2008.01.037. PubMed DOI

Melgert B.N., Olinga P., Van der Laan J.M.S., Weert B., Cho J., Schuppan D., Groothuis G.M.M., Meijer D.K.F., Poelstra K. Targeting dexamethasone to Kupffer cells: Effects on liver inflammation and fibrosis in rats. Hepatology. 2001;34:719–728. doi: 10.1053/jhep.2001.27805. PubMed DOI

van de Bovenkamp M., Groothuis G.M.M., Draaisma A.L., Merema M.T., Bezuijen J.I., van Gils M.J., Meijer D.K.F., Friedman S.L., Olinga P. Precision-cut liver slices as a new model to study toxicity-induced hepatic stellate cell activation in a physiologic milieu. Toxicol. Sci. 2005;85:632–638. doi: 10.1093/toxsci/kfi127. PubMed DOI

Vickers A.E.M., Saulnier M., Cruz E., Merema M.T., Rose K., Bentley P., Olinga P. Organ slice viability extended for pathway characterization: An in vitro model to investigate fibrosis. Toxicol. Sci. 2004;82:534–544. doi: 10.1093/toxsci/kfh285. PubMed DOI

Starokozhko V., Vatakuti S., Schievink B., Merema M.T., Asplund A., Synnergren J., Aspegren A., Groothuis G.M.M. Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5 days. Arch. Toxicol. 2017;91:2079–2092. doi: 10.1007/s00204-016-1865-x. PubMed DOI PMC

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:12. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Bustin S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002;29:17. doi: 10.1677/jme.0.0290023. PubMed DOI

Vickers A.E.M., Fisher R.L. Human Liver Slices to Investigate Injury and Repair. Appl. In Vitro Toxicol. 2018;4:280–287. doi: 10.1089/aivt.2018.0017. DOI

Wan H., Zhao Z., Qian C., Sui Y., Malik A.A., Chen J. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal. Biochem. 2010;399:257–261. doi: 10.1016/j.ab.2009.12.008. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Bustin S., Nolan T. Talking the talk, but not walking the walk: RT-qPCR as a paradigm for the lack of reproducibility in molecular research. Eur. J. Clin. Invest. 2017;47:756–774. doi: 10.1111/eci.12801. PubMed DOI

Gerets H.H.J., Tilmant K., Gerin B., Chanteux H., Depelchin B.O., Dhalluin S., Atienzar F.A. Characterization of primary human hepatocytes, HepG2 cells, and HepaRG cells at the mRNA level and CYP activity in response to inducers and their predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 2012;28:69–87. doi: 10.1007/s10565-011-9208-4. PubMed DOI PMC

Hadi M., Westra I.M., Starokozhko V., Dragovic S., Merema M.T., Groothuis G.M.M. Human Precision-Cut Liver Slices as an ex Vivo Model to Study Idiosyncratic Drug-Induced Liver Injury. Chem. Res. Toxicol. 2013;26:710–720. doi: 10.1021/tx300519p. PubMed DOI

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC

Lardizábal M.N., Nocito A.L., Daniele S.M., Ornella L.A., Palatnik J.F., Veggi L.M. Reference Genes for Real-Time PCR Quantification of MicroRNAs and Messenger RNAs in Rat Models of Hepatotoxicity. PLoS One. 2012;7:e36323. doi: 10.1371/journal.pone.0036323. PubMed DOI PMC

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem–loop RT–PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC

Kibbe W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res. 2007;35:W43–W46. doi: 10.1093/nar/gkm234. PubMed DOI PMC

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper - Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004;26:509–515. doi: 10.1023/B:BILE.0000019559.84305.47. PubMed DOI

Andersen C.L., Jensen J.L., Orntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Silver N., Best S., Jiang J., Thein S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006;7:9. doi: 10.1186/1471-2199-7-33. PubMed DOI PMC

Xie F.L., Xiao P., Chen D.L., Xu L., Zhang B.H. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol.Biol. 2012;80:75–84. doi: 10.1007/s11103-012-9885-2. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Pavo N., Raderer M., Goliasch G., Wurm R., Strunk G., Cho A., Novak J.F., Gisslinger H., Steger G.G., Hejna M., et al. Subclinical involvement of the liver is associated with prognosis in treatment naïve cancer patients. Oncotarget. 2017;8:81250–81260. doi: 10.18632/oncotarget.17131. PubMed DOI PMC

Nygard A.B., Jorgensen C.B., Cirera S., Fredholm M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 2007;8:67. doi: 10.1186/1471-2199-8-67. PubMed DOI PMC

Ahn K., Huh J.W., Park S.J., Kim D.S., Ha H.S., Kim Y.J., Lee J.R., Chang K.T., Kim H.S. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol. Biol. 2008;9:78. doi: 10.1186/1471-2199-9-78. PubMed DOI PMC

Granitzny A., Knebel J., Schaudien D., Braun A., Steinberg P., Dasenbrock C., Hansen T. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound. Toxicol. In Vitro. 2017;42:200–213. doi: 10.1016/j.tiv.2017.05.001. PubMed DOI

Lee S.M.L., Schelcher C., Gashi S., Schreiber S., Thasler R.M.K., Jauch K.-W., Thasler W.E.J.M.B. RNA Stability in Human Liver: Comparison of Different Processing Times, Temperatures and Methods. Mol. Biotechnol. 2013;53:1–8. doi: 10.1007/s12033-011-9493-4. PubMed DOI

Vickers A.E., Fisher R.L., Sinclair J.R. Glutathione Modulation and Oxidative Stress in Human Liver Slices. Curr. Drug Discov. Technol. 2010;7:154–169. doi: 10.2174/157016310793180530. PubMed DOI

Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Matoušková P. microRNAs and Reference Gene Methodology. In: Patel V., Preedy V., editors. Handbook of Nutrition, Diet, and Epigenetics. 1st ed. Springer International Publishing; Cham, Switzerland: 2017. pp. 1–17.

Wang J., Lu M., Qiu C., Cui Q. TransmiR: A transcription factor–microRNA regulation database. Nucleic Acids Res. 2010;38:D119–D122. doi: 10.1093/nar/gkp803. PubMed DOI PMC

Schwarzenbach H., da Silva A.M., Calin G., Pantel K. Data Normalization Strategies for MicroRNA Quantification. Clin. Chem. 2015;61:1333–1342. doi: 10.1373/clinchem.2015.239459. PubMed DOI PMC

Matoušková P., Bártíková H., Boušová I., Hanušová V., Szotáková B., Skálová L. Reference Genes for Real-Time PCR Quantification of Messenger RNAs and MicroRNAs in Mouse Model of Obesity. PLoS ONE. 2014;9:e86033. doi: 10.1371/journal.pone.0086033. PubMed DOI PMC

Lamba V., Ghodke-Puranik Y., Guan W., Lamba J.K. Identification of suitable reference genes for hepatic microRNA quantitation. BMC Res. Notes. 2014;7:129. doi: 10.1186/1756-0500-7-129. PubMed DOI PMC

Zhang J., Le T.D., Liu L., Liu B., He J., Goodall G.J., Li J. Identifying direct miRNA–mRNA causal regulatory relationships in heterogeneous data. J. Biomed. Inform. 2014;52:438–447. doi: 10.1016/j.jbi.2014.08.005. PubMed DOI

Tang X., Chen S. Epigenetic Regulation of Cytochrome P450 Enzymes and Clinical Implication. Curr. Drug Metab. 2015;16:86–96. doi: 10.2174/138920021602150713114159. PubMed DOI

Ramamoorthy A., Liu Y., Philips S., Desta Z., Lin H., Goswami C., Gaedigk A., Li L., Flockhart D.A., Skaar T.C. Regulation of MicroRNA Expression by Rifampin in Human Hepatocytes. Drug Metab. Dispos. 2013;41:1763–1768. doi: 10.1124/dmd.113.052886. PubMed DOI PMC

Takahashi K., Tatsumi N., Fukami T., Yokoi T., Nakajima M. Integrated Analysis of Rifampicin-induced MicroRNA and Gene Expression Changes in Human Hepatocytes. Drug Metab. Pharmacokinet. 2014;29:333–340. doi: 10.2133/dmpk.DMPK-13-RG-114. PubMed DOI

Dheda K., Huggett J.F., Chang J.S., Kim L.U., Bustin S.A., Johnson M.A., Rook G.A.W., Zumla A. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal. Biochem. 2005;344:141–143. doi: 10.1016/j.ab.2005.05.022. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...