The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.
- MeSH
- antibakteriální látky * farmakologie MeSH
- benzaldehydy * farmakologie MeSH
- biofilmy * účinky léků MeSH
- cymeny farmakologie MeSH
- faktory virulence MeSH
- gentamiciny * farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- Pseudomonas aeruginosa * účinky léků fyziologie MeSH
- synergismus léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Introduction: Olive (Olea uropeae) is a traditional plant containing oleuropein and hydroxytyrosol, which are useful and used empirically for treating diabetes mellitus.Objective: To review the potential of oleuropein and hydroxytyrosol as an evidence base for diabetes potential treatment and safety.Methods: This chapter summarizes several studies available on Pubmed and Google Scholar regarding the characteristic method and extraction method as well as the effectiveness and toxicity of oleuropein and hydroxytyrosol in vitro and in vivo.Result: Oleuropein and hydroxytyrosol are effective antihyperglycemics for treating T2D. They can reduce body weight, basal glycemia, and insulin resistance by stopping the liver from making glucose and stopping the body from absorbing glucose. Several studies have shown that both isolates can control glycemic levels equivalent to free fatty acids and are safe to use.Conclusion: Oleuropein and hydroxytyrosol are extracted by several methods and can be used as potential anti-diabetics with obesity risk factors. Evidence shows that both isolates are safe for both acute and chronic use.
- Klíčová slova
- oleuropein, hydroxytyrosol,
- MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus MeSH
- hypoglykemika * farmakologie terapeutické užití MeSH
- inzulinová rezistence MeSH
- iridoidy farmakologie terapeutické užití MeSH
- lidé MeSH
- Olea * fyziologie MeSH
- rostlinné extrakty * farmakologie terapeutické užití MeSH
- testy toxicity metody MeSH
- Check Tag
- lidé MeSH
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
- MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- antivirové látky farmakologie terapeutické užití chemie MeSH
- lidé MeSH
- monoterpeny * farmakologie chemie terapeutické užití MeSH
- nádory farmakoterapie metabolismus MeSH
- receptory aromatických uhlovodíků * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
- MeSH
- biologické markery metabolismus MeSH
- dospělí MeSH
- lidé MeSH
- metylace DNA MeSH
- oxidační stres MeSH
- pesticidy * analýza MeSH
- pyrethriny * moč MeSH
- vystavení vlivu životního prostředí analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Carbapenem resistance observed in Klebsiella pneumoniae strains limits treatment options. Therefore, use of antibiotics combined with bioactive compounds may be an important strategy to control K. pneumoniae. The purpose of this study was to evaluate the activity of combination of carvacrol and meropenem on carbapenem-resistant K. pneumoniae (CRKP) strains. The presence of blaOXA-48 carbapenemase in all 25 CRKP strains was identified using the PCR technique. The combination of carvacrol and meropenem was tested for antimicrobial activity on CRKP strains. The minimum inhibitory concentrations of carvacrol and meropenem were detected within a range of 32-128 μg/mL using the broth microdilution method. Synergy between carvacrol and meropenem was observed on 8 of the 25 CRKP strains by checkerboard assay (FICI = 0.5) and confirmed by time-kill assay. According to the live-dead test results, the viability percentage of the cells exposed to synergistic combination was 35.47% at the end of 24 h. The membrane damage caused by the synergistic combination was spectrophotometrically measured (A = 0.21) and further confirmed by SEM analysis. According to the MTT assay, both carvacrol and meropenem did not show any statistically significant cytotoxic effect on Vero cells (p > 0.05). In conclusion, the results suggest that carvacrol and meropenem can act synergistically to inhibit the growth of CRKP.
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy * genetika MeSH
- Cercopithecus aethiops MeSH
- cymeny MeSH
- karbapenemy farmakologie MeSH
- Klebsiella pneumoniae * MeSH
- meropenem farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- synergismus léků MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Liver cirrhosis is among the leading causes of death worldwide. Because of its asymptomatic evolution, timely diagnosis of liver cirrhosis via non-invasive techniques is currently under investigation. Among the diagnostic methods employing volatile organic compounds directly detectable from breath, sensing of limonene (C10H16) represents one of the most promising strategies for diagnosing alcohol liver diseases, including cirrhosis. In the present work, by means of state-of-the-art Density Functional Theory calculations including the U correction, we present an investigation on the sensing capabilities of a chromium-oxide-doped graphene (i.e., Cr2O3-graphene) structure toward limonene detection. In contrast with other structures such as g-triazobenzol (g-C6N6) monolayers and germanane, which revealed their usefulness in detecting limonene via physisorption, the proposed Cr2O3-graphene heterostructure is capable of undergoing chemisorption upon molecular approaching of limonene over its surface. In fact, a high adsorption energy is recorded (∼-1.6 eV). Besides, a positive Moss-Burstein effect is observed upon adsorption of limomene on the Cr2O3-graphene heterostructure, resulting in a net increase of the bandgap (∼50%), along with a sizeable shift of the Fermi level toward the conduction band. These findings pave the way toward the experimental validation of such predictions and the employment of Cr2O3-graphene heterostructures as sensors of key liver cirrhosis biomarkers.
Bacterial resistance is a natural process carried out by bacteria, which has been considered a public health problem in recent decades. This process can be triggered through the efflux mechanism, which has been extensively studied, mainly related to the use of natural products to inhibit this mechanism. To carry out the present study, the minimum inhibitory concentration (MIC) tests of the compound limonene were performed, through the microdilution methodology in sterile 96-well plates. Tests were also carried out with the association of the compound with ethidium bromide and ciprofloxacin, in addition to the ethidium bromide fluorimetry, and later the molecular docking. From the tests performed, it was possible to observe that the compound limonene presented significant results when associated with ethidium bromide and the antibiotic used. Through the fluorescence emission, it was observed that when associated with the compound limonene, a greater ethidium bromide fluorescence was emitted. Finally, when analyzing the in silico study, it demonstrated that limonene can efficiently fit into the MepA structure. In this way, it is possible to show that limonene can contribute to cases of bacterial resistance through an efflux pump, so that it is necessary to carry out more studies to prove its effects against bacteria carrying an efflux pump and assess the toxicity of the compound.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny metabolismus MeSH
- limonen MeSH
- mikrobiální testy citlivosti MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům * MeSH
- simulace molekulového dockingu MeSH
- Staphylococcus aureus * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Current-use pesticides (CUP) are extensively applied in both agricultural and urban settings. Exposure occurs mainly via the dietary pathway; however, other pathways such as inhalation or skin contact are also important. In this study, urinary levels of 12 CUP metabolites were investigated among 110 parent-child pairs during two seasons of 2020. Metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH) were detected in more than 60% of the samples. Chlorpyrifos metabolite was found at the highest concentration and tebuconazole was detected in almost all samples. CUP urinary metabolite levels were significantly higher in children in comparison to adults, except for tebuconazole, which was similar in both groups. In children, winter samples had significantly higher concentrations of pyrethroid and chlorpyrifos metabolites in comparison to the summer samples, but in adults, only chlorpyrifos metabolite concentrations were higher in the winter. No association between CUP urinary metabolite levels and proximity/surface of agricultural areas around residences was observed. Based on our findings, we suspect that CUP exposure is mainly driven by diet and that the effect of environmental exposure is less significant. Daily Intakes were estimated with three possible scenarios considering the amount of the metabolite excreted in urine and were compared to Acceptable Daily Intake values. Using a realistic scenario, exposure to chlorpyrifos exhibited the highest health risk, but still within a safe level. The Acceptable Daily Intake was exceeded only in one child in the case of cypermethrin. The cumulative risk assessment of pesticide mixtures having an effect on the nervous system, based on the total margin of exposure calculations, did not indicate any risk. The overall risk associated with pesticide exposure in the observed population was low. However, the risk observed using the worst-case scenario suggests the need for continuous evaluation of human exposure to such compounds, especially in children.
- MeSH
- biologické markery moč MeSH
- dospělí MeSH
- dursban * moč MeSH
- insekticidy * moč MeSH
- lidé MeSH
- pesticidy * moč MeSH
- pyrethriny * moč MeSH
- vystavení vlivu životního prostředí analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Pyrethroid metabolites are widely detectable in urine from the general population, including pregnant women and children. Pyrethroids are neurotoxic and suggested endocrine disruptors. Exposure during vulnerable developmental time windows may have long-term impacts on neurodevelopment. OBJECTIVE: To evaluate the epidemiological evidence for neurodevelopmental effects related to prenatal and childhood pyrethroid exposure in a systematic review and to assess biological plausibility by evaluating mechanistic evidence. METHODS: We searched PubMed and Web of Science up to September 1, 2021 and included original studies published in English in which pyrethroid exposure was measured or estimated during pregnancy or childhood and associations with neurodevelopmental outcomes in the children were investigated. The Navigation Guide Systematic Review Methodology was used to evaluate the epidemiological evidence. For mechanistic evidence, we focused on relevant key events (KEs) suggested in Adverse Outcome Pathways (AOPs) using the OECD-supported AOP-wiki platform. A systematic search combining the KEs with pyrethroids, including 26 individual compounds, was performed in the ToxCast database. RESULTS: Twenty-five epidemiological studies met the inclusion criteria, 17 presented findings on prenatal exposure, 10 on childhood exposure and two on both exposure windows. The overall body of evidence was rated as "moderate quality" with "sufficient evidence" for an association between prenatal pyrethroid exposure and adverse neurodevelopment. For childhood exposure, the overall rating was "low quality" with "limited evidence" because of cross-sectional study design. Regarding mechanistic evidence, we found that pyrethroids are able to interfere with neurodevelopmental KEs included in established AOPs for adverse neurodevelopmental. The evidence was strongest for interference with thyroid hormone (TH) function. CONCLUSION: Pyrethroids are probably human developmental neurotoxicants and adverse impacts of pyrethroid exposure on neurodevelopment are likely at exposure levels occurring in the general population. Preventive measures to reduce exposure among pregnant women and children are warranted.
- MeSH
- dítě MeSH
- epidemiologické studie MeSH
- hormony štítné žlázy MeSH
- insekticidy * toxicita MeSH
- lidé MeSH
- průřezové studie MeSH
- pyrethriny * metabolismus toxicita MeSH
- těhotenství MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- systematický přehled MeSH
In this review, we collected and presented evidence from the scientific literature regarding the biotechnological production and applications of limonene and its oxidative derivates in various fields such as food, pharmaceutical, cosmetic or polymer industries. Limonene biotransfor-mations may be regarded as biotechnological processes aligned to sustainable development. Advantages associated with these bioprocesses include the use of by-products as raw materials, mild reaction conditions, high regio-and stereoselectivity and the production of value-added prod-ucts. The biological activities of limonene and its oxidative derivates, such as carveol, carvone, limonene-1,2-diol, α-terpineol, or perillyl alcohol, suggest that the terpene biotechnology is becoming a promising and prosperous science.