Current-use pesticide (CUP) exposure occurs mainly through diet and environmental application in both agricultural and urban settings. While pesticide exposure has been associated with many adverse health outcomes, the intermediary molecular mechanisms are still not completely elucidated. Among others, their roles in epigenetics (DNA methylation) and DNA damage due to oxidative stress are presumed. Scientific evidence on urinary biomarkers of such body response in general population is limited, especially in children. A total of 440 urine samples (n = 110 parent-child pairs) were collected during the winter and summer seasons in order to describe levels of overall DNA methylation (5-mC, 5-mdC, 5-hmdC, 7-mG, 3-mA) and oxidative stress (8-OHdG) biomarkers and investigate their possible associations with metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH). Linear mixed-effects models accounting for intraindividual and intrahousehold correlations were utilized. We applied false discovery rate procedure to account for multiplicity and adjusted for potential confounding variables. Higher urinary levels of most biological response biomarkers were measured in winter samples. In adjusted repeated measures models, interquartile range (IQR) increases in pyrethroid metabolites were associated with higher oxidative stress. t/c-DCCA and TCPY were associated with higher urinary levels of cytosine methylation biomarkers (5-mC and/or 5-mdC). The most robust association was observed for tebuconazole metabolite with 3-mA (-15.1% change per IQR increase, 95% CI = -23.6, -5.69) suggesting a role of this pesticide in reduced demethylation processes through possible DNA glycosylase inhibition. Our results indicate an urgent need to extend the range of analyzed environmental chemicals such as azole pesticides (e.g. prothioconazole) in human biomonitoring studies. This is the first study to report urinary DNA methylation biomarkers in children and associations between CUP metabolites and a comprehensive set of biomarkers including methylated and oxidized DNA alterations. Observed associations warrant further large-scale research of these biomarkers and environmental pollutants including CUPs.
- MeSH
- biologické markery metabolismus MeSH
- dospělí MeSH
- lidé MeSH
- metylace DNA MeSH
- oxidační stres MeSH
- pesticidy * analýza MeSH
- pyrethriny * moč MeSH
- vystavení vlivu životního prostředí analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Current-use pesticides (CUP) are extensively applied in both agricultural and urban settings. Exposure occurs mainly via the dietary pathway; however, other pathways such as inhalation or skin contact are also important. In this study, urinary levels of 12 CUP metabolites were investigated among 110 parent-child pairs during two seasons of 2020. Metabolites of pyrethroids (3-PBA, t/c-DCCA), chlorpyrifos (TCPY), and tebuconazole (TEB-OH) were detected in more than 60% of the samples. Chlorpyrifos metabolite was found at the highest concentration and tebuconazole was detected in almost all samples. CUP urinary metabolite levels were significantly higher in children in comparison to adults, except for tebuconazole, which was similar in both groups. In children, winter samples had significantly higher concentrations of pyrethroid and chlorpyrifos metabolites in comparison to the summer samples, but in adults, only chlorpyrifos metabolite concentrations were higher in the winter. No association between CUP urinary metabolite levels and proximity/surface of agricultural areas around residences was observed. Based on our findings, we suspect that CUP exposure is mainly driven by diet and that the effect of environmental exposure is less significant. Daily Intakes were estimated with three possible scenarios considering the amount of the metabolite excreted in urine and were compared to Acceptable Daily Intake values. Using a realistic scenario, exposure to chlorpyrifos exhibited the highest health risk, but still within a safe level. The Acceptable Daily Intake was exceeded only in one child in the case of cypermethrin. The cumulative risk assessment of pesticide mixtures having an effect on the nervous system, based on the total margin of exposure calculations, did not indicate any risk. The overall risk associated with pesticide exposure in the observed population was low. However, the risk observed using the worst-case scenario suggests the need for continuous evaluation of human exposure to such compounds, especially in children.
- MeSH
- biologické markery moč MeSH
- dospělí MeSH
- dursban * moč MeSH
- insekticidy * moč MeSH
- lidé MeSH
- pesticidy * moč MeSH
- pyrethriny * moč MeSH
- vystavení vlivu životního prostředí analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH