Anthelmintic activity of European fern extracts against Haemonchus contortus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
"Grant Schemes at CU" (reg. no. CZ.02.2.69/0.0/0.0/19_073/0016935)
Univerzita Karlova v Praze
SVV260664
Univerzita Karlova v Praze
LTC17035
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
37443113
PubMed Central
PMC10347864
DOI
10.1186/s13567-023-01192-8
PII: 10.1186/s13567-023-01192-8
Knihovny.cz E-zdroje
- Klíčová slova
- ATP-assay, Athyrium, Dryopteris, Natural anthelmintics, medicinal plants, nematodes,
- MeSH
- anthelmintika * farmakologie terapeutické užití MeSH
- Haemonchus * MeSH
- helmintóza * MeSH
- kapradiny * MeSH
- larva MeSH
- lidé MeSH
- nemoci ovcí * farmakoterapie parazitologie MeSH
- ovce MeSH
- rostlinné extrakty farmakologie MeSH
- veterinární léky * farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthelmintika * MeSH
- rostlinné extrakty MeSH
- veterinární léky * MeSH
Most drugs used in the treatment of helminthiasis in humans and animals have lost their efficacy due to the development of drug-resistance in helminths. Moreover, since anthelmintics, like many pharmaceuticals, are now recognized as hazardous contaminants of the environment, returning to medicinal plants and their products represents an environmentally friendly way to treat helminthiasis. The goal of the present study was to test the anthelminthic activity of methanol extracts of eight selected European ferns from the genera Dryopteris, Athyrium and Blechnum against the nematode Haemonchus contortus, a widespread parasite of small ruminants. Eggs and adults of H. contortus drug-susceptible strain ISE and drug-resistant strain WR were isolated from experimentally infected sheep. The efficacy of fern extracts was assayed using egg hatch test and adults viability test based on ATP-level measurement. Among the ferns tested, only Dryopteris aemula extract (0.2 mg/mL) inhibited eggs hatching by 25% in comparison to control. Athyrium distentifolium, Dryopteris aemula and Dryopteris cambrensis were effective against H. contortus adults. In concentration 0.1 mg/mL, A. distentifolium, D. aemula, D. cambrensis significantly decreased the viability of females from ISE and WR strains to 36.2%, 51.9%, 32.9% and to 35.3%, 27.0%, 23.3%, respectively in comparison to untreated controls. None of the extracts exhibited toxicity in precise cut slices from ovine liver. Polyphenol's analysis identified quercetin, kaempferol, luteolin, 3-hydroxybenzoic acid, caffeic acid, coumaric acid and protocatechuic acid as the major components of these anthelmintically active ferns.
Institute of Experimental Botany Czech Academy of Sciences Rozvojová 263 16502 Prague Czech Republic
Zobrazit více v PubMed
Ahuir-Baraja AE, Cibot F, Llobat L, Garijo MM. Anthelmintic resistance: is a solution possible? Exp Parasitol. 2021;230:108169. doi: 10.1016/j.exppara.2021.108169. PubMed DOI
Lanusse C, Canton C, Virkel G, Alvarez L, Costa L, Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34:664–682. doi: 10.1016/j.pt.2018.05.005. PubMed DOI
Zajíčková M, Nguyen LT, Skálová L, Raisová Stuchlíková L, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today. 2020;25:430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI
Geary TG. Haemonchus contortus: applications in drug discovery. Haemonchus Contortus and Haemonchosis—past, present and future trends. edited by gasser RB Von Samson-Himmelstjerna G. Adv Parasitol. 2016;93:429–463. doi: 10.1016/bs.apar.2016.02.013. PubMed DOI
Panic G, Duthaler U, Speich B, Keiser J. Repurposing drugs for the treatment and control of helminth infections. Int J Parasitol Drugs Drug Resist. 2014;4:185–200. doi: 10.1016/j.ijpddr.2014.07.002. PubMed DOI PMC
Weeks JC, Roberts WM, Leasure C, Suzuki BM, Robinson KJ, Currey H, Wangchuk P, Eichenberger RM, Saxton AD, Bird TD, Kraemer BC, Loukas A, Hawdon JM, Caffrey CR, Liachko NF. Sertraline, paroxetine, and chlorpromazine are rapidly acting anthelmintic drugs capable of clinical repurposing. Sci Rep. 2018;8:975. doi: 10.1038/s41598-017-18457-w. PubMed DOI PMC
Bilkova Z, Mala J, Hrich K. Fate and behaviour of veterinary sulphonamides under denitrifying conditions. Sci Total Environ. 2019;695:133824. doi: 10.1016/j.scitotenv.2019.133824. PubMed DOI
Kim B, Ji K, Kim C, Kang H, Lee S, Kwon B, Kho Y, Park K, Kim K, Choi K. Pharmaceutical residues in streams near concentrated animal feeding operations of Korea—occurrences and associated ecological risks. Sci Total Environ. 2019;655:408–413. doi: 10.1016/j.scitotenv.2018.11.233. PubMed DOI
Vokral I, Sadibolova M, Podlipna R, Lamka J, Prchal L, Sobotova D, Lokvencova K, Szotakova B, Skalova L. Ivermectin environmental impact: excretion profile in sheep and phytotoxic effect in Sinapis alba. Ecotoxicol Environ Saf. 2019;169:944–949. doi: 10.1016/j.ecoenv.2018.11.097. PubMed DOI
Widiyanti PM, Sudarwanto MB, Sudarnika E, Widiastuti R. The use of enrofloxacin antibiotic as a veterinary drug and its residual hazards on public health. Wartazoa. 2019;29:7584. doi: 10.14334/wartazoa.v29i2.2015. DOI
Geary TG, Chibale K, Abegaz B, Andrae-Marobela K, Ubalijoro E. A new approach for anthelmintic discovery for humans. Trends Parasitol. 2012;28:176–181. doi: 10.1016/j.pt.2012.02.006. PubMed DOI
Mukherjee N, Mukherjee S, Saini P, Roy P, Babu SPS. Phenolics and terpenoids; the promising new search for anthelmintics: a critical review. Mini Rev Med Chem. 2016;16:1415–1441. doi: 10.2174/1389557516666151120121036. PubMed DOI
Fayaz MR, Abbas RZ, Abbas A, Khan MK, Raza MA, Israr M, Khan JA, Mahmood MS, Saleemi MK, Rehman TU, Zaman MA, Sindhu ZUD. Potential of botanical driven essential oils against Haemonchus contortus in small ruminants. Bol Latinoam Caribe Plantas Med Aromat. 2019;18:533543.
Santos FO, Cerqueira APM, Branco A, Batatinha MJM, Botura MB. Anthelmintic activity of plants against gastrointestinal nematodes of goats: a review. Parasitology. 2019;146:1233–1246. doi: 10.1017/S0031182019000672. PubMed DOI
Miro MV, Luque S, Cardozo P, Lloberas M, Sousa DM, Soares AMS, Costa LM, Virkei GL, Lifschitz AL. Plant-derived compounds as a tool for the control of gastrointestinal nematodes: modulation of abamectin pharmacological action by carvone. Front Vet Sci. 2020;7:601750. doi: 10.3389/fvets.2020.601750. PubMed DOI PMC
Das K, Rekha R, Ibrahim MA, Ahmed SY, Dang R. Effect of demographic location on Phlebodium decumanum (Willd.) J. Sm. for its phytoconstituents and establishment of antioxidant and novel anthelmintic activity of its aqueous and methanolic leaf extracts. Ann Phytomedicine Int J. 2017;6:101–106. doi: 10.21276/ap.2017.6.1.15. DOI
Devi RK, Vasantha S, Panneerselvam A, Rajesh NV, Jeyathilakan N. Phytochemical constituents and in vitro trematocidal activity of Blechnum orientale Linn. against Gastrothylax crumenifer. Ann Phytomedicine Int J. 2016;5:127–134.
Devi RK, Vasantha S, Panneerselvam A, Rajesh NV, Jeyathilakan N, Venkataramanan R. Gastrothylax crumenifer: ultrastructure and histopathology study of in vitro trematodicidal effect of Microlepia speluncae (L.) Moore. J Appl Anim Res. 2017;46:427–434. doi: 10.1080/09712119.2017.1331849. DOI
Arsenopoulos KV, Fthenakis GC, Katsarou EI, Papadopoulos E. Haemonchosis: a challenging parasitic infection of sheep and goats. Animals. 2021;11:363. doi: 10.3390/ani11020363. PubMed DOI PMC
Langhansova L, Pumprova K, Haisel D, Ekrt L, Pavicic A, Zajíčková M, Vanek T, Dvorakova M. European ferns as rich sources of antioxidants in the human diet. Food Chem. 2021;356:129637. doi: 10.1016/j.foodchem.2021.129637. PubMed DOI
van Wyk JA, Gerber HM, Groeneveld HT. A technique for the recovery of nematodes from ruminants by migration from gastro-intestinal ingesta gelled in agar: large-scale application. Onderstepoort J Vet Res. 1980;47:147–158. PubMed
Zajíčková M, Prchal L, Navrátilová M, Vodvárková N, Matoušková P, Vokřál I, Nguyen LT, Skálová L. Sertraline as a new potential anthelmintic against Haemonchus contortus: toxicity, efficacy, and biotransformation. Vet Res. 2021;52:143. doi: 10.1186/s13567-021-01012-x. PubMed DOI PMC
Nguyen LT, Zajíčková M, Mašátová E, Matoušková P, Skálová L. The ATP bioluminescence assay: a new application and optimization for viability testing in the parasitic nematode Haemonchus contortus. Vet Res. 2021;52:124. doi: 10.1186/s13567-021-00980-4. PubMed DOI PMC
Zárybnický T, Matoušková P, Lancošová B, Šubrt Z, Skálová L, Boušová I. Inter-individual variability in acute toxicity of R-pulegone and R-menthofuran in human liver slices and their influence on miRNA expression changes in comparison to acetaminophen. Int J Mol Sci. 2018;19:1805. doi: 10.3390/ijms19061805. PubMed DOI PMC
Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. In: Gasser RB, Von Samson-Himmelstjerna G, editors. Haemonchus Contortus and Haemonchosis—past, present and future trends. Amsterdam: Elsevier; 2016. PubMed
Crook EK, O'Brien DJ, Howell SB, Storey BE, Whitley NC, Burke JM, Kaplan RM. Prevalence of anthelmintic resistance on sheep and goat farms in the midAtlantic region and comparison of in vivo and in vitro detection methods. Small Rumin Res. 2016;143:89–96. doi: 10.1016/j.smallrumres.2016.09.006. DOI
Urban J, Kokoska L, Langrova I, Matejkova J. In vitro anthelmintic effects of medicinal plants used in Czech Republic. Pharm Biol. 2008;46:808–813. doi: 10.1080/13880200802315618. DOI
Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist. 2015;5:127–134. doi: 10.1016/j.ijpddr.2015.06.001. PubMed DOI PMC
Olmedo-Juarez A, Jimenez-Chino AL, Bugarin A, Zamilpa A, Mendoza-de Gives P, Villa-Mancera A, Lopez-Arellano ME, Olivares-Perez J, Delgado-Nunez EJ, Gonzalez-Cortazar M. Phenolic acids and flavonoids from Pithecellobium dulce (Robx.) benth leaves exhibit ovicidal activity against Haemonchus contortus. Plants. 2022;11:2555. doi: 10.3390/plants11192555. PubMed DOI PMC
Rashmi HB, Negi PS. Phytochemical constituents and anthelmintic potential of Surinam cherry (Eugenia uniflora L.) at different fruit developmental stages. South Afr J Botany. 2022;145:512–521. doi: 10.1016/j.sajb.2022.03.037. DOI
Escareno-Diaz S, Alonso-Diaz MA, de Gives PM, Castillo-Gallegos E, von Sonde FE. Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode Cooperia punctata. Vet Parasitol. 2019;274:108909. doi: 10.1016/j.vetpar.2019.08.003. PubMed DOI
Lima CS, Pereira MH, Gainza YA, Hoste H, Regasini LO, Chagas ACD. Anthelmintic effect of Pterogyne nitens (Fabaceae) on eggs and larvae of Haemonchus contortus: analyses of structure-activity relationships based on phenolic compounds. Ind Crop Product. 2021;164:113348. doi: 10.1016/j.indcrop.2021.113348. DOI
Adak M, Kumar P. Herbal anthelmintic agents: a narrative review. J Trad Chine Med. 2022;42:641–651. PubMed PMC
Hoste H, Meza-Ocampos G, Marchand S, Sotiraki S, Sarasti K, Blomstrand BM, Williams AR, Thamsborg SM, Athanasiadou S, Enemark HL, Acosta JFT, Mancilla-Montelongo G, Castro CS, Costa LM, Louvandini H, Sousa DM, Salminen JP, Karonen M, Engstrom M, Charlier J, Niderkorn V, Morgan ER. Use of agro-industrial by-products containing tannins for the integrated control of gastrointestinal nematodes in ruminants. Parasite. 2022;29:10. doi: 10.1051/parasite/2022010. PubMed DOI PMC