Sesquiterpenes Are Agonists of the Pregnane X Receptor but Do Not Induce the Expression of Phase I Drug-Metabolizing Enzymes in the Human Liver
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09946S
Grantová Agentura České Republiky
SVV 260 416
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31540101
PubMed Central
PMC6769599
DOI
10.3390/ijms20184562
PII: ijms20184562
Knihovny.cz E-zdroje
- Klíčová slova
- cytochrome P450 3A4, gene reporter assay, mRNA expression, precision-cut liver slices, pregnane X receptor, protein expression, sesquiterpene,
- MeSH
- aldo-keto reduktasy metabolismus MeSH
- buňky Hep G2 MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- farnesol farmakologie MeSH
- hepatocyty metabolismus MeSH
- játra enzymologie MeSH
- karbonyl reduktáza (NADPH) metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- metabolická clearance MeSH
- monocyklické seskviterpeny farmakologie MeSH
- polycyklické seskviterpeny farmakologie MeSH
- pregnanový X receptor agonisté metabolismus MeSH
- receptory aromatických uhlovodíků agonisté metabolismus MeSH
- rodina 2 cytochromů P450 metabolismus MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- seskviterpeny farmakologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aldo-keto reduktasy MeSH
- caryophyllene oxide MeSH Prohlížeč
- caryophyllene MeSH Prohlížeč
- cytochrom P-450 CYP3A MeSH
- cytochrome P-450 CYP2C subfamily MeSH Prohlížeč
- farnesol MeSH
- humulene MeSH Prohlížeč
- karbonyl reduktáza (NADPH) MeSH
- messenger RNA MeSH
- monocyklické seskviterpeny MeSH
- nerolidol MeSH Prohlížeč
- polycyklické seskviterpeny MeSH
- pregnanový X receptor MeSH
- receptory aromatických uhlovodíků MeSH
- rodina 2 cytochromů P450 MeSH
- seskviterpeny MeSH
- systém (enzymů) cytochromů P-450 MeSH
Sesquiterpenes, the main components of plant essential oils, are bioactive compounds with numerous health-beneficial activities. Sesquiterpenes can interact with concomitantly administered drugs due to the modulation of drug-metabolizing enzymes (DMEs). The aim of this study was to evaluate the modulatory effects of six sesquiterpenes (farnesol, cis-nerolidol, trans-nerolidol, α-humulene, β-caryophyllene, and caryophyllene oxide) on the expression of four phase I DMEs (cytochrome P450 3A4 and 2C, carbonyl reductase 1, and aldo-keto reductase 1C) at both the mRNA and protein levels. For this purpose, human precision-cut liver slices (PCLS) prepared from 10 patients and transfected HepG2 cells were used. Western blotting, quantitative real-time PCR and reporter gene assays were employed in the analyses. In the reporter gene assays, all sesquiterpenes significantly induced cytochrome P450 3A4 expression via pregnane X receptor interaction. However in PCLS, their effects on the expression of all the tested DMEs at the mRNA and protein levels were mild or none. High inter-individual variabilities in the basal levels as well as in modulatory efficacy of the tested sesquiterpenes were observed, indicating a high probability of marked differences in the effects of these compounds among the general population. Nevertheless, it seems unlikely that the studied sesquiterpenes would remarkably influence the bioavailability and efficacy of concomitantly administered drugs.
Zobrazit více v PubMed
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharm. 2014;4:177. doi: 10.3389/fphar.2013.00177. PubMed DOI PMC
Kennedy D.A., Seely D. Clinically based evidence of drug-herb interactions: A systematic review. Expert. Opin. Drug Saf. 2010;9:79–124. doi: 10.1517/14740330903405593. PubMed DOI
Awortwe C., Bruckmueller H., Cascorbi I. Interaction of herbal products with prescribed medications: A systematic review and meta-analysis. Pharm. Res. 2019;141:397–408. doi: 10.1016/j.phrs.2019.01.028. PubMed DOI
Agbabiaka T.B., Wider B., Watson L.K., Goodman C. Concurrent Use of Prescription Drugs and Herbal Medicinal Products in Older Adults: A Systematic Review. Drugs Aging. 2017;34:891–905. doi: 10.1007/s40266-017-0501-7. PubMed DOI PMC
Tonner P.H., Kampen J., Scholz J. Pathophysiological changes in the elderly. Best Pr. Res. Clin. Anaesthesiol. 2003;17:163–177. doi: 10.1016/S1521-6896(03)00010-7. PubMed DOI
Bartikova H., Hanusova V., Skalova L., Ambroz M., Bousova I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr. Top. Med. Chem. 2014;14:2478–2494. doi: 10.2174/1568026614666141203120833. PubMed DOI
Nguyen L.T., Mysliveckova Z., Szotakova B., Spicakova A., Lnenickova K., Ambroz M., Kubicek V., Krasulova K., Anzenbacher P., Skalova L. The inhibitory effects of β-caryophyllene, β-caryophyllene oxide and α-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem. Biol. Interact. 2017;278:123–128. doi: 10.1016/j.cbi.2017.10.021. PubMed DOI
Chaves J.S., Leal P.C., Pianowisky L., Calixto J.B. Pharmacokinetics and tissue distribution of the sesquiterpene α-humulene in mice. Planta. Med. 2008;74:1678–1683. doi: 10.1055/s-0028-1088307. PubMed DOI
Liu H., Yang G., Tang Y., Cao D., Qi T., Qi Y., Fan G. Physicochemical characterization and pharmacokinetics evaluation of β-caryophyllene/β-cyclodextrin inclusion complex. Int. J. Pharm. 2013;450:304–310. doi: 10.1016/j.ijpharm.2013.04.013. PubMed DOI
Saito A.Y., Sussmann R.A., Kimura E.A., Cassera M.B., Katzin A.M. Quantification of nerolidol in mouse plasma using gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2015;111:100–103. doi: 10.1016/j.jpba.2015.03.030. PubMed DOI PMC
Spicakova A., Szotakova B., Dimunova D., Mysliveckova Z., Kubicek V., Ambroz M., Lnenickova K., Krasulova K., Anzenbacher P., Skalova L. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions. Molecules. 2017;22:590. doi: 10.3390/molecules22040509. PubMed DOI PMC
Lnenickova K., Svobodova H., Skalova L., Ambroz M., Novak F., Matouskova P. The impact of sesquiterpenes β-caryophyllene oxide and trans-nerolidol on xenobiotic-metabolizing enzymes in mice in vivo. Xenobiotica. 2018;48:1089–1097. doi: 10.1080/00498254.2017.1398359. PubMed DOI
De Graaf I.A., Olinga P., de Jager M.H., Merema M.T., de Kanter R., van de Kerkhof E.G., Groothuis G.M. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat. Protoc. 2010;5:1540–1551. doi: 10.1038/nprot.2010.111. PubMed DOI
Olinga P., Schuppan D. Precision-cut liver slices: A tool to model the liver ex vivo. J. Hepatol. 2013;58:1252–1253. doi: 10.1016/j.jhep.2013.01.009. PubMed DOI
Edwards R.J., Price R.J., Watts P.S., Renwick A.B., Tredger J.M., Boobis A.R., Lake B.G. Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab. Dispos. 2003;31:282–288. doi: 10.1124/dmd.31.3.282. PubMed DOI
Faugeras L., Dili A., Druez A., Krug B., Decoster C., D’Hondt L. Treatment options for metastatic colorectal cancer in patients with liver dysfunction due to malignancy. Crit. Rev. Oncol. Hematol. 2017;115:59–66. doi: 10.1016/j.critrevonc.2017.03.029. PubMed DOI
Ciombor K.K., Goff L.W. Current therapy and future directions in biliary tract malignancies. Curr. Treat. Opt. Oncol. 2013;14:337–349. doi: 10.1007/s11864-013-0237-5. PubMed DOI PMC
He W.Z., Guo G.F., Yin C.X., Jiang C., Wang F., Qiu H.J., Chen X.X., Rong R.M., Zhang B., Xia L.P. Gamma-glutamyl transpeptidase level is a novel adverse prognostic indicator in human metastatic colorectal cancer. Colorectal Dis. 2013;15:e443–e452. doi: 10.1111/codi.12258. PubMed DOI
Lehmann J.M., McKee D.D., Watson M.A., Willson T.M., Moore J.T., Kliewer S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 1998;102:1016–1023. doi: 10.1172/JCI3703. PubMed DOI PMC
Whitlock J.P., Jr. Induction of cytochrome P4501A1. Annu. Rev. Pharm. Toxicol. 1999;39:103–125. doi: 10.1146/annurev.pharmtox.39.1.103. PubMed DOI
Nebert D.W., Dalton T.P., Okey A.B., Gonzalez F.J. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem. 2004;279:23847–23850. doi: 10.1074/jbc.R400004200. PubMed DOI
Pimkaew P., Kublbeck J., Petsalo A., Jukka J., Suksamrarn A., Juvonen R., Auriola S., Piyachaturawat P., Honkakoski P. Interactions of sesquiterpenes zederone and germacrone with the human cytochrome P450 system. Toxicol. In Vitro. 2013;27:2005–2012. doi: 10.1016/j.tiv.2013.07.004. PubMed DOI
Burk O., Arnold K.A., Nussler A.K., Schaeffeler E., Efimova E., Avery B.A., Avery M.A., Fromm M.F., Eichelbaum M. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol. Pharm. 2005;67:1954–1965. doi: 10.1124/mol.104.009019. PubMed DOI
Burk O., Piedade R., Ghebreghiorghis L., Fait J.T., Nussler A.K., Gil J.P., Windshugel B., Schwab M. Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoforms. Br. J. Pharm. 2012;167:666–681. doi: 10.1111/j.1476-5381.2012.02033.x. PubMed DOI PMC
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Therapeut. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Bousova I., Skalova L., Soucek P., Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI
Penning T.M., Wangtrakuldee P., Auchus R.J. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes. Endocr. Rev. 2019;40:447–475. doi: 10.1210/er.2018-00089. PubMed DOI PMC
Fischedick J.T., Standiford M., Johnson D.A., De Vos R.C., Todorovic S., Banjanac T., Verpoorte R., Johnson J.A. Activation of antioxidant response element in mouse primary cortical cultures with sesquiterpene lactones isolated from Tanacetum parthenium. Planta. Med. 2012;78:1725–1730. doi: 10.1055/s-0032-1315241. PubMed DOI PMC
Nakamura Y., Yoshida C., Murakami A., Ohigashi H., Osawa T., Uchida K. Zerumbone, a tropical ginger sesquiterpene, activates phase II drug metabolizing enzymes. Febs. Lett. 2004;572:245–250. doi: 10.1016/j.febslet.2004.07.042. PubMed DOI
Achour B., Barber J., Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis. Drug Metab. Dispos. 2014;42:1349–1356. doi: 10.1124/dmd.114.058834. PubMed DOI
Martin H., Sarsat J.P., de Waziers I., Housset C., Balladur P., Beaune P., Albaladejo V., Lerche-Langrand C. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm. Res. 2003;20:557–568. doi: 10.1023/A:1023234429596. PubMed DOI
Persson K.P., Ekehed S., Otter C., Lutz E.S., McPheat J., Masimirembwa C.M., Andersson T.B. Evaluation of human liver slices and reporter gene assays as systems for predicting the cytochrome p450 induction potential of drugs in vivo in humans. Pharm. Res. 2006;23:56–69. doi: 10.1007/s11095-005-8812-5. PubMed DOI
Qin C.Z., Lv Q.L., Wu N.Y., Cheng L., Chu Y.C., Chu T.Y., Hu L., Cheng Y., Zhang X., Zhou H.H. Mechanism-based inhibition of Alantolactone on human cytochrome P450 3A4 in vitro and activity of hepatic cytochrome P450 in mice. J. Ethnopharmacol. 2015;168:146–149. doi: 10.1016/j.jep.2015.03.061. PubMed DOI
Pelkonen O., Turpeinen M., Hakkola J., Honkakoski P., Hukkanen J., Raunio H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol. 2008;82:667–715. doi: 10.1007/s00204-008-0332-8. PubMed DOI
Staines A.G., Sindelar P., Coughtrie M.W., Burchell B. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. Biochem. J. 2004;384:637–645. doi: 10.1042/BJ20040997. PubMed DOI PMC
Liu Z., Liu S., Xie Z., Pavlovicz R.E., Wu J., Chen P., Aimiuwu J., Pang J., Bhasin D., Neviani P., et al. Modulation of DNA methylation by a sesquiterpene lactone parthenolide. J. Pharm. Exp. 2009;329:505–514. doi: 10.1124/jpet.108.147934. PubMed DOI PMC
Gopal Y.N., Arora T.S., Van Dyke M.W. Parthenolide specifically depletes histone deacetylase 1 protein and induces cell death through ataxia telangiectasia mutated. Chem. Biol. 2007;14:813–823. doi: 10.1016/j.chembiol.2007.06.007. PubMed DOI
Pan Y.Z., Gao W., Yu A.M. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos. 2009;37:2112–2117. doi: 10.1124/dmd.109.027680. PubMed DOI PMC
Wen S.W., Zhang Y.F., Li Y., Xu Y.Z., Li Z.H., Lu H., Zhu Y.G., Liu Z.X., Tian Z.Q. Isoalantolactone Inhibits Esophageal Squamous Cell Carcinoma Growth Through Downregulation of MicroRNA-21 and Derepression of PDCD4. Dig. Dis. Sci. 2018;63:2285–2293. doi: 10.1007/s10620-018-5119-z. PubMed DOI
Zuo W., Wang Z.Z., Xue J. Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression. Int. J. Mol. Sci. 2014;15:14298–14312. doi: 10.3390/ijms150814298. PubMed DOI PMC
Koe X.F., Lim E.L., Seah T.C., Amanah A., Wahab H.A., Adenan M.I., Sulaiman S.F., Tan M.L. Evaluation of in vitro cytochrome P450 induction and inhibition activity of deoxyelephantopin, a sesquiterpene lactone from Elephantopus scaber L. Food Chem. Toxicol. 2013;60:98–108. doi: 10.1016/j.fct.2013.07.030. PubMed DOI
Svecova L., Vrzal R., Burysek L., Anzenbacherova E., Cerveny L., Grim J., Trejtnar F., Kunes J., Pour M., Staud F., et al. Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metab. Dispos. 2008;36:339–348. doi: 10.1124/dmd.107.018341. PubMed DOI
Dvorak Z., Vrzal R., Henklova P., Jancova P., Anzenbacherova E., Maurel P., Svecova L., Pavek P., Ehrmann J., Havlik R., et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem. Pharm. 2008;75:580–588. doi: 10.1016/j.bcp.2007.09.013. PubMed DOI
Zarybnicky T., Matouskova P., Lancosova B., Subrt Z., Skalova L., Bousova I. Inter-Individual Variability in Acute Toxicity of R-Pulegone and R-Menthofuran in Human Liver Slices and Their Influence on miRNA Expression Changes in Comparison to Acetaminophen. Int. J. Mol. Sci. 2018;19:1805. doi: 10.3390/ijms19061805. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Pharmacology of Natural Volatiles and Essential Oils in Food, Therapy, and Disease Prophylaxis