Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions

. 2017 Mar 24 ; 22 (4) : . [epub] 20170324

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28338641

Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cis-nerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug-sesquiterpene interactions should be verified in in vivo experiments.

Zobrazit více v PubMed

Bartikova H., Hanusova V., Skalova L., Ambroz M., Bousova I. Antioxidant, Pro-Oxidant and Other Biological Activities of Sesquiterpenes. Curr. Top. Med. Chem. 2014;14:2478–2494. doi: 10.2174/1568026614666141203120833. PubMed DOI

Ku C.M., Lin J.Y. Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice. Allergol. Immunopath. 2016;44:149–159. doi: 10.1016/j.aller.2015.05.009. PubMed DOI

Ku C.M., Lin J.Y. Farnesol, a Sesquiterpene Alcohol in Herbal Plants, Exerts Anti-Inflammatory and Antiallergic Effects on Ovalbumin-Sensitized and -Challenged Asthmatic Mice. Evid.-Based Complement. Altern. 2015 doi: 10.1155/2015/387357. PubMed DOI PMC

Santhanasabapathy R., Sudhandiran G. Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res. 2015;1620:42–56. doi: 10.1016/j.brainres.2015.04.043. PubMed DOI

Joo J.H., Jetten A.M. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010;287:123–135. doi: 10.1016/j.canlet.2009.05.015. PubMed DOI PMC

Lee J.H., Kim C., Kim S.H., Sethi G., Ahn K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015;360:280–293. doi: 10.1016/j.canlet.2015.02.024. PubMed DOI

Szucs G., Murlasits Z., Torok S., Kocsis G.F., Paloczi J., Gorbe A., Csont T., Csonka C., Ferdinandy P. Cardioprotection by Farnesol: Role of the Mevalonate Pathway. Cardiovasc. Drug Ther. 2013;27:269–277. doi: 10.1007/s10557-013-6460-2. PubMed DOI

Chan W.K., Tan L.T.H., Chan K.G., Lee L.H., Goh B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules. 2016;21:529. doi: 10.3390/molecules21050529. PubMed DOI PMC

AbouLaila M., Sivakumar T., Yokoyama N., Igarashi I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol. Int. 2010;59:278–282. doi: 10.1016/j.parint.2010.02.006. PubMed DOI

Silva M.P.N., Oliveira G.L.S., De Carvalho R.B.F., De Sousa D.P., Freitas R.M., Pinto P.L.S., De Moraes J. Antischistosomal Activity of the Terpene Nerolidol. Molecules. 2014;19:3793–3803. doi: 10.3390/molecules19033793. PubMed DOI PMC

Saito A.Y., Rodriguez A.A.M., Vega D.S.M., Sussmann R.A.C., Kimura E.A., Katzin A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agent. 2016;48:641–646. doi: 10.1016/j.ijantimicag.2016.08.017. PubMed DOI

Javed H., Azimullah S., Khair S.B.A., Ojha S., Haque M.E. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci. 2016;17:58. doi: 10.1186/s12868-016-0293-4. PubMed DOI PMC

Ryabchenko B., Tulupova E., Schmidt E., Wlcek K., Buchbauer G., Jirovetz L. Investigation of anticancer and antiviral properties of selected aroma samples. Nat. Prod. Commun. 2008;3:1085–1088.

Malatkova P., Wsol V. Carbonyl reduction pathways in drug metabolism. Drug Metab. Rev. 2014;46:96–123. doi: 10.3109/03602532.2013.853078. PubMed DOI

Barski O.A., Tipparaju S.M., Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008;40:553–624. doi: 10.1080/03602530802431439. PubMed DOI PMC

Bousova I., Skalova L., Soucek P., Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI

Hoffmann F., Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab. Rev. 2007;39:87–144. doi: 10.1080/03602530600969440. PubMed DOI

Oppermann U. Carbonyl reductases: The complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu. Rev. Pharmacol. Toxicol. 2007;47:293–322. doi: 10.1146/annurev.pharmtox.47.120505.105316. PubMed DOI

Moon Y.J., Wang X.D., Morris M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro. 2006;20:187–210. doi: 10.1016/j.tiv.2005.06.048. PubMed DOI

Taneja I., Raju K.S.R., Wahajuddin M. Dietary Isoflavones as Modulators of Drug Metabolizing Enzymes and Transporters: Effect on Prescription Medicines. Crit. Rev. Food Sci. 2016;56:S95–S109. doi: 10.1080/10408398.2015.1045968. PubMed DOI

Bousova I., Skalova L. Inhibition and induction of glutathione S-transferases by flavonoids: Possible pharmacological and toxicological consequences. Drug Metab. Rev. 2012;44:267–286. doi: 10.3109/03602532.2012.713969. PubMed DOI

Hodek P. Flavonoids. In: Anzenbacher P., Zanger U.M., editors. Metabolism of Drugs and Other Xenobiotics. Wiley-VCH; Weinheim, Germany: 2012. pp. 543–582.

Bamba Y., Yun Y.S., Kunugi A., Inoue H. Compounds isolated from Curcuma aromatica Salisb. inhibit human P450 enzymes. J. Nat. Med. 2011;65:583–587. doi: 10.1007/s11418-011-0507-0. PubMed DOI

Pimkaew P., Kublbeck J., Petsalo A., Jukka J., Suksamrarn A., Juvonen R., Auriola S., Piyachaturawat P., Honkakoski P. Interactions of sesquiterpenes zederone and germacrone with the human cytochrome P450 system. Toxicol. In Vitro. 2013;27:2005–2012. doi: 10.1016/j.tiv.2013.07.004. PubMed DOI

Qin C.Z., Lv Q.L., Wu N.Y.Y., Cheng L., Chu Y.C., Chu T.Y., Hu L., Cheng Y., Zhang X., Zhou H.H. Mechanism-based inhibition of Alantolactone on human cytochrome P450 3A4 in vitro and activity of hepatic cytochrome P450 in mice. J. Ethnopharmacol. 2015;168:146–149. doi: 10.1016/j.jep.2015.03.061. PubMed DOI

Jeong H.U., Kwon S.S., Kong T.Y., Kim J.H., Lee H.S. Inhibitory Effects of Cedrol, beta-Cedrene, and Thujopsene on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. J. Toxicol. Environ. Health Part A. 2014;77:1522–1532. doi: 10.1080/15287394.2014.955906. PubMed DOI

Burke M.D., Thompson S., Weaver R.J., Wolf C.R., Mayer R.T. Cytochrome-P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem. Pharmacol. 1994;48:923–936. PubMed

Krasulova K., Siller M., Holas O., Dvorak Z., Anzenbacher P. Enantiospecific effects of chiral drugs on cytochrome P450 inhibition in vitro. Xenobiotica. 2016;46:315–324. doi: 10.3109/00498254.2015.1076086. PubMed DOI

Raner G.M., Muir A.Q., Lowry C.W., Davis B.A. Farnesol as an inhibitor and substrate for rabbit liver microsomal P450 enzymes. Biochem. Biophys. Res. Commun. 2002;293:1–6. doi: 10.1016/S0006-291X(02)00178-X. PubMed DOI

Gillette J. Techniques for studying drug metabolism in vitro. In: La Du B.N., Mandel H.G., Way E.L., editors. Fundamentals of Drug Metabolism and Drug Disposition. The Williams and Wilkins Company; Baltimore, MA, USA: 1971. pp. 400–418.

Phillips I.R., Shephard E.A. Cytochrome P450 Protocols. Humana Press; Totowa, NJ, USA: 1998.

Soucek P. Novel sensitive high-performance liquid chromatographic method for assay of coumarin 7-hydroxylation. J. Chromatogr. B Biomed. Sci. Appl. 1999;734:23–29. doi: 10.1016/S0378-4347(99)00325-4. PubMed DOI

Morse M.A., Lu J. High-performance liquid chromatographic method for measurement of cytochrome P450-mediated metabolism of 7-ethoxy-4-trifluoromethylcoumarin. J. Chromatogr. B Biomed. Sci. Appl. 1998;708:290–293. doi: 10.1016/S0378-4347(97)00650-6. PubMed DOI

Donato M.T., Jimenez N., Castell J.V., Gomez-Lechon M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 2004;32:699–706. doi: 10.1124/dmd.32.7.699. PubMed DOI

Crespi C.L., Chang T.K., Waxman D.J. Determination of CYP2C9-catalyzed diclofenac 4′-hydroxylation by high-performance liquid chromatography. Methods Mol. Biol. 1998;107:129–133. PubMed

Crespi C.L., Chang T.K., Waxman D.J. CYP2C19-mediated (S)-mephenytoin 4′-hydroxylation assayed by high-performance liquid chromatography with radiometric detection. Methods Mol. Biol. 1998;107:135–139. PubMed

Crespi C.L., Chang T.K., Waxman D.J. CYP2D6-dependent bufuralol 1′-hydroxylation assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorescence detection. Methods Mol. Biol. 1998;107:141–145. PubMed

Lucas D., Menez J.F., Berthou F. Chlorzoxazone: An in vitro and in vivo substrate probe for liver CYP2E1. Methods Enzymol. 1996;272:115–123. PubMed

Guengerich F.P., Martin M.V., Beaune P.H., Kremers P., Wolff T., Waxman D.J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1986;261:5051–5060. PubMed

Ghosal A., Satoh H., Thomas P.E., Bush E., Moore D. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450. Drug Metab. Dispos. 1996;24:940–947. PubMed

Kronbach T., Mathys D., Umeno M., Gonzalez F.J., Meyer U.A. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol. 1989;36:89–96. PubMed

Veinlichova A., Jancova P., Siller M., Anzenbacher P., Kuca K., Jun D., Fusek J., Anzenbacherova E. Effect of acetylcholinesterase oxime-type reactivators K-48 and HI-6 on human liver microsomal cytochromes P450 in vitro. Chem. Biol. Int. 2009;180:449–453. doi: 10.1016/j.cbi.2009.03.016. PubMed DOI

Novotna A., Krasulova K., Bartonkova I., Korhonova M., Bachleda P., Anzenbacher P., Dvorak Z. Dual effects of ketoconazole cis-enantiomers on CYP3A4 in human hepatocytes and HepG2 Cells. PLoS ONE. 2014;9:e111286. doi: 10.1371/journal.pone.0111286. PubMed DOI PMC

Kopecna-Zapletalova M., Krasulova K., Anzenbacher P., Hodek P., Anzenbacherova E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: Inhibition of CYP enzyme activities. Xenobiotica. 2017;47:324–331. doi: 10.1080/00498254.2016.1195028. PubMed DOI

Mate L., Virkel G., Lifschitz A., Ballent M., Lanusse C. Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 2008;76:773–783. doi: 10.1016/j.bcp.2008.07.002. PubMed DOI

Cullen J.J., Hinkhouse M.M., Grady M., Gaut A.W., Liu J.R., Zhang Y.P., Weydert C.J.D., Domann F.E., Oberley L.W. Dicumarol inhibition of NADPH: Quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513–5520. PubMed

Mizuma T., Machida M., Hayashi M., Awazu S. Correlation of drug conjugate metabolism rates between in vivo and in vitro glucuronidation and sufatation of para-nitrophenol as a model comound in rat. J. Pharmacobio-Dyn. 1982;5:811–817. doi: 10.1248/bpb1978.5.811. PubMed DOI

Frame L.T., Ozawa S., Nowell S.A., Chou H.C., Delongchamp R.R., Doerge D.R., Lang N.P., Kadlubar F.F. Simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metabol. Dispos. 2000;28:1063–1068. PubMed

Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferase A from rat liver. Arch. Biochem. Biophys. 1976;175:710–716. doi: 10.1016/0003-9861(76)90563-4. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...