Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28338641
PubMed Central
PMC6154719
DOI
10.3390/molecules22040509
PII: molecules22040509
Knihovny.cz E-zdroje
- Klíčová slova
- drug-metabolizing enzymes, farnesol, inhibition, nerolidol,
- MeSH
- farnesol chemie farmakologie MeSH
- inhibiční koncentrace 50 MeSH
- inhibitory cytochromu P450 chemie farmakologie MeSH
- játra enzymologie MeSH
- kinetika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- seskviterpeny chemie farmakologie MeSH
- subcelulární frakce enzymologie MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- xenobiotika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- farnesol MeSH
- inhibitory cytochromu P450 MeSH
- nerolidol MeSH Prohlížeč
- seskviterpeny MeSH
- systém (enzymů) cytochromů P-450 MeSH
- xenobiotika MeSH
Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cis-nerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug-sesquiterpene interactions should be verified in in vivo experiments.
Zobrazit více v PubMed
Bartikova H., Hanusova V., Skalova L., Ambroz M., Bousova I. Antioxidant, Pro-Oxidant and Other Biological Activities of Sesquiterpenes. Curr. Top. Med. Chem. 2014;14:2478–2494. doi: 10.2174/1568026614666141203120833. PubMed DOI
Ku C.M., Lin J.Y. Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice. Allergol. Immunopath. 2016;44:149–159. doi: 10.1016/j.aller.2015.05.009. PubMed DOI
Ku C.M., Lin J.Y. Farnesol, a Sesquiterpene Alcohol in Herbal Plants, Exerts Anti-Inflammatory and Antiallergic Effects on Ovalbumin-Sensitized and -Challenged Asthmatic Mice. Evid.-Based Complement. Altern. 2015 doi: 10.1155/2015/387357. PubMed DOI PMC
Santhanasabapathy R., Sudhandiran G. Farnesol attenuates lipopolysaccharide-induced neurodegeneration in Swiss albino mice by regulating intrinsic apoptotic cascade. Brain Res. 2015;1620:42–56. doi: 10.1016/j.brainres.2015.04.043. PubMed DOI
Joo J.H., Jetten A.M. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010;287:123–135. doi: 10.1016/j.canlet.2009.05.015. PubMed DOI PMC
Lee J.H., Kim C., Kim S.H., Sethi G., Ahn K.S. Farnesol inhibits tumor growth and enhances the anticancer effects of bortezomib in multiple myeloma xenograft mouse model through the modulation of STAT3 signaling pathway. Cancer Lett. 2015;360:280–293. doi: 10.1016/j.canlet.2015.02.024. PubMed DOI
Szucs G., Murlasits Z., Torok S., Kocsis G.F., Paloczi J., Gorbe A., Csont T., Csonka C., Ferdinandy P. Cardioprotection by Farnesol: Role of the Mevalonate Pathway. Cardiovasc. Drug Ther. 2013;27:269–277. doi: 10.1007/s10557-013-6460-2. PubMed DOI
Chan W.K., Tan L.T.H., Chan K.G., Lee L.H., Goh B.H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules. 2016;21:529. doi: 10.3390/molecules21050529. PubMed DOI PMC
AbouLaila M., Sivakumar T., Yokoyama N., Igarashi I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol. Int. 2010;59:278–282. doi: 10.1016/j.parint.2010.02.006. PubMed DOI
Silva M.P.N., Oliveira G.L.S., De Carvalho R.B.F., De Sousa D.P., Freitas R.M., Pinto P.L.S., De Moraes J. Antischistosomal Activity of the Terpene Nerolidol. Molecules. 2014;19:3793–3803. doi: 10.3390/molecules19033793. PubMed DOI PMC
Saito A.Y., Rodriguez A.A.M., Vega D.S.M., Sussmann R.A.C., Kimura E.A., Katzin A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agent. 2016;48:641–646. doi: 10.1016/j.ijantimicag.2016.08.017. PubMed DOI
Javed H., Azimullah S., Khair S.B.A., Ojha S., Haque M.E. Neuroprotective effect of nerolidol against neuroinflammation and oxidative stress induced by rotenone. BMC Neurosci. 2016;17:58. doi: 10.1186/s12868-016-0293-4. PubMed DOI PMC
Ryabchenko B., Tulupova E., Schmidt E., Wlcek K., Buchbauer G., Jirovetz L. Investigation of anticancer and antiviral properties of selected aroma samples. Nat. Prod. Commun. 2008;3:1085–1088.
Malatkova P., Wsol V. Carbonyl reduction pathways in drug metabolism. Drug Metab. Rev. 2014;46:96–123. doi: 10.3109/03602532.2013.853078. PubMed DOI
Barski O.A., Tipparaju S.M., Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab. Rev. 2008;40:553–624. doi: 10.1080/03602530802431439. PubMed DOI PMC
Bousova I., Skalova L., Soucek P., Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI
Hoffmann F., Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab. Rev. 2007;39:87–144. doi: 10.1080/03602530600969440. PubMed DOI
Oppermann U. Carbonyl reductases: The complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu. Rev. Pharmacol. Toxicol. 2007;47:293–322. doi: 10.1146/annurev.pharmtox.47.120505.105316. PubMed DOI
Moon Y.J., Wang X.D., Morris M.E. Dietary flavonoids: Effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro. 2006;20:187–210. doi: 10.1016/j.tiv.2005.06.048. PubMed DOI
Taneja I., Raju K.S.R., Wahajuddin M. Dietary Isoflavones as Modulators of Drug Metabolizing Enzymes and Transporters: Effect on Prescription Medicines. Crit. Rev. Food Sci. 2016;56:S95–S109. doi: 10.1080/10408398.2015.1045968. PubMed DOI
Bousova I., Skalova L. Inhibition and induction of glutathione S-transferases by flavonoids: Possible pharmacological and toxicological consequences. Drug Metab. Rev. 2012;44:267–286. doi: 10.3109/03602532.2012.713969. PubMed DOI
Hodek P. Flavonoids. In: Anzenbacher P., Zanger U.M., editors. Metabolism of Drugs and Other Xenobiotics. Wiley-VCH; Weinheim, Germany: 2012. pp. 543–582.
Bamba Y., Yun Y.S., Kunugi A., Inoue H. Compounds isolated from Curcuma aromatica Salisb. inhibit human P450 enzymes. J. Nat. Med. 2011;65:583–587. doi: 10.1007/s11418-011-0507-0. PubMed DOI
Pimkaew P., Kublbeck J., Petsalo A., Jukka J., Suksamrarn A., Juvonen R., Auriola S., Piyachaturawat P., Honkakoski P. Interactions of sesquiterpenes zederone and germacrone with the human cytochrome P450 system. Toxicol. In Vitro. 2013;27:2005–2012. doi: 10.1016/j.tiv.2013.07.004. PubMed DOI
Qin C.Z., Lv Q.L., Wu N.Y.Y., Cheng L., Chu Y.C., Chu T.Y., Hu L., Cheng Y., Zhang X., Zhou H.H. Mechanism-based inhibition of Alantolactone on human cytochrome P450 3A4 in vitro and activity of hepatic cytochrome P450 in mice. J. Ethnopharmacol. 2015;168:146–149. doi: 10.1016/j.jep.2015.03.061. PubMed DOI
Jeong H.U., Kwon S.S., Kong T.Y., Kim J.H., Lee H.S. Inhibitory Effects of Cedrol, beta-Cedrene, and Thujopsene on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. J. Toxicol. Environ. Health Part A. 2014;77:1522–1532. doi: 10.1080/15287394.2014.955906. PubMed DOI
Burke M.D., Thompson S., Weaver R.J., Wolf C.R., Mayer R.T. Cytochrome-P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem. Pharmacol. 1994;48:923–936. PubMed
Krasulova K., Siller M., Holas O., Dvorak Z., Anzenbacher P. Enantiospecific effects of chiral drugs on cytochrome P450 inhibition in vitro. Xenobiotica. 2016;46:315–324. doi: 10.3109/00498254.2015.1076086. PubMed DOI
Raner G.M., Muir A.Q., Lowry C.W., Davis B.A. Farnesol as an inhibitor and substrate for rabbit liver microsomal P450 enzymes. Biochem. Biophys. Res. Commun. 2002;293:1–6. doi: 10.1016/S0006-291X(02)00178-X. PubMed DOI
Gillette J. Techniques for studying drug metabolism in vitro. In: La Du B.N., Mandel H.G., Way E.L., editors. Fundamentals of Drug Metabolism and Drug Disposition. The Williams and Wilkins Company; Baltimore, MA, USA: 1971. pp. 400–418.
Phillips I.R., Shephard E.A. Cytochrome P450 Protocols. Humana Press; Totowa, NJ, USA: 1998.
Soucek P. Novel sensitive high-performance liquid chromatographic method for assay of coumarin 7-hydroxylation. J. Chromatogr. B Biomed. Sci. Appl. 1999;734:23–29. doi: 10.1016/S0378-4347(99)00325-4. PubMed DOI
Morse M.A., Lu J. High-performance liquid chromatographic method for measurement of cytochrome P450-mediated metabolism of 7-ethoxy-4-trifluoromethylcoumarin. J. Chromatogr. B Biomed. Sci. Appl. 1998;708:290–293. doi: 10.1016/S0378-4347(97)00650-6. PubMed DOI
Donato M.T., Jimenez N., Castell J.V., Gomez-Lechon M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 2004;32:699–706. doi: 10.1124/dmd.32.7.699. PubMed DOI
Crespi C.L., Chang T.K., Waxman D.J. Determination of CYP2C9-catalyzed diclofenac 4′-hydroxylation by high-performance liquid chromatography. Methods Mol. Biol. 1998;107:129–133. PubMed
Crespi C.L., Chang T.K., Waxman D.J. CYP2C19-mediated (S)-mephenytoin 4′-hydroxylation assayed by high-performance liquid chromatography with radiometric detection. Methods Mol. Biol. 1998;107:135–139. PubMed
Crespi C.L., Chang T.K., Waxman D.J. CYP2D6-dependent bufuralol 1′-hydroxylation assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorescence detection. Methods Mol. Biol. 1998;107:141–145. PubMed
Lucas D., Menez J.F., Berthou F. Chlorzoxazone: An in vitro and in vivo substrate probe for liver CYP2E1. Methods Enzymol. 1996;272:115–123. PubMed
Guengerich F.P., Martin M.V., Beaune P.H., Kremers P., Wolff T., Waxman D.J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1986;261:5051–5060. PubMed
Ghosal A., Satoh H., Thomas P.E., Bush E., Moore D. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450. Drug Metab. Dispos. 1996;24:940–947. PubMed
Kronbach T., Mathys D., Umeno M., Gonzalez F.J., Meyer U.A. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol. Pharmacol. 1989;36:89–96. PubMed
Veinlichova A., Jancova P., Siller M., Anzenbacher P., Kuca K., Jun D., Fusek J., Anzenbacherova E. Effect of acetylcholinesterase oxime-type reactivators K-48 and HI-6 on human liver microsomal cytochromes P450 in vitro. Chem. Biol. Int. 2009;180:449–453. doi: 10.1016/j.cbi.2009.03.016. PubMed DOI
Novotna A., Krasulova K., Bartonkova I., Korhonova M., Bachleda P., Anzenbacher P., Dvorak Z. Dual effects of ketoconazole cis-enantiomers on CYP3A4 in human hepatocytes and HepG2 Cells. PLoS ONE. 2014;9:e111286. doi: 10.1371/journal.pone.0111286. PubMed DOI PMC
Kopecna-Zapletalova M., Krasulova K., Anzenbacher P., Hodek P., Anzenbacherova E. Interaction of isoflavonoids with human liver microsomal cytochromes P450: Inhibition of CYP enzyme activities. Xenobiotica. 2017;47:324–331. doi: 10.1080/00498254.2016.1195028. PubMed DOI
Mate L., Virkel G., Lifschitz A., Ballent M., Lanusse C. Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 2008;76:773–783. doi: 10.1016/j.bcp.2008.07.002. PubMed DOI
Cullen J.J., Hinkhouse M.M., Grady M., Gaut A.W., Liu J.R., Zhang Y.P., Weydert C.J.D., Domann F.E., Oberley L.W. Dicumarol inhibition of NADPH: Quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513–5520. PubMed
Mizuma T., Machida M., Hayashi M., Awazu S. Correlation of drug conjugate metabolism rates between in vivo and in vitro glucuronidation and sufatation of para-nitrophenol as a model comound in rat. J. Pharmacobio-Dyn. 1982;5:811–817. doi: 10.1248/bpb1978.5.811. PubMed DOI
Frame L.T., Ozawa S., Nowell S.A., Chou H.C., Delongchamp R.R., Doerge D.R., Lang N.P., Kadlubar F.F. Simple colorimetric assay for phenotyping the major human thermostable phenol sulfotransferase (SULT1A1) using platelet cytosols. Drug Metabol. Dispos. 2000;28:1063–1068. PubMed
Habig W.H., Pabst M.J., Jakoby W.B. Glutathione S-transferase A from rat liver. Arch. Biochem. Biophys. 1976;175:710–716. doi: 10.1016/0003-9861(76)90563-4. PubMed DOI