UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus

. 2020 ; 11 () : 594116. [epub] 20201126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33324241

The nematode Haemonchus contortus, a gastrointestinal parasite of ruminants, can severely burden livestock production. Although anthelmintics are the mainstay in the treatment of haemonchosis, their efficacy diminishes due to drug-resistance development in H. contortus. An increased anthelmintics inactivation via biotransformation belongs to a significant drug-resistance mechanism in H. contortus. UDP-glycosyltransferases (UGTs) participate in the metabolic inactivation of anthelmintics and other xenobiotic substrates through their conjugation with activated sugar, which drives the elimination of the xenobiotics due to enhanced solubility. The UGTs family, in terms of the biotransformation of commonly used anthelmintics, has been well described in adults as a target stage. In contrast, the free-living juvenile stages of H. contortus have attracted less attention. The expression of UGTs considerably varies throughout the life cycle of the juvenile nematodes, suggesting their different roles. Furthermore, the constitutive expression in a susceptible strain with two resistant strains shows several resistance-related changes in UGTs expression, and the exposure of juvenile stages of H. contortus to albendazole (ABZ) and ABZ-sulfoxide (ABZSO; in sublethal concentrations) leads to the increased expression of several UGTs. The anthelmintic drug ABZ and its primary metabolite ABZSO biotransformation, tested in the juvenile stages, shows significant differences between susceptible and resistant strain. Moreover, higher amounts of glycosidated metabolites of ABZ are formed in the resistant strain. Our results show similarly, as in adults, the UGTs and glycosidations significant for resistance-related differences in ABZ biotransformation and warrant further investigation in their individual functions.

Zobrazit více v PubMed

Bekelaar K., Waghorn T., Tavendale M., McKenzie C., Leathwick D. (2018). Heat shock, but not temperature, is a biological trigger for the exsheathment of third-stage larvae of Haemonchus contortus. Parasitol. Res. 117 2395–2402. 10.1007/s00436-018-5927-2 PubMed DOI

Besier R. B., Kahn L. P., Sargison N. D., Van Wyk J. A. (2016). The pathophysiology, ecology and epidemiology of haemonchus contortus infection in small ruminants. Past Present Fut. Trends 93 95–143. 10.1016/bs.apar.2016.02.022 PubMed DOI

Britton C., Samarasinghe B., Knox D. P. (2012). Ups and downs of RNA interference in parasitic nematodes. Exp. Parasitol. 132 56–61. 10.1016/j.exppara.2011.08.002 PubMed DOI

Fontaine P., Choe K. (2018). The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int. J. Parasitol. 8 312–319. 10.1016/j.ijpddr.2018.04.006 PubMed DOI PMC

Harder A. (2016). “The Biochemistry of Haemonchus contortus and Other Parasitic Nematodes,” in Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends eds Gasser R. B., VonSamsonHimmelstjerna G. (Cambridge, MA: Academic Press; ), 69–94. 10.1016/bs.apar.2016.02.010 PubMed DOI

Hu D. G., Hulin J. U. A., Nair P. C., Haines A. Z., McKinnon R. A., Mackenzie P. I., et al. (2019). The UGTome: the expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism. Pharmacol. Ther. 204:107414. 10.1016/j.pharmthera.2019.107414 PubMed DOI

Kaplan R. M., Vidyashankar A. N. (2012). An inconvenient truth: global worming and anthelmintic resistance. Vet. Parasitol. 186 70–78. 10.1016/j.vetpar.2011.11.048 PubMed DOI

Kellerova P., Matouskova P., Lamka J., Vokral I., Szotakova B., Zajickova M., et al. (2019). Ivermectin-induced changes in the expression of cytochromes P450 and efflux transporters in Haemonchus contortus female and male adults. Vet. Parasitol. 273 24–31. 10.1016/j.vetpar.2019.07.006 PubMed DOI

Kellerová P., Raisová Stuchlíková L., Matoušková P., Štěrbová K., Lamka J., Navrátilová M., et al. (2020). Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet. Res. 51:94. PubMed PMC

Kotze A. C., Prichard R. K. (2016). Anthelmintic resistance in haemonchus contortus: history, mechanisms and diagnosis. Haemon. Contort. Haemonch. 93 397–428. 10.1016/bs.apar.2016.02.012 PubMed DOI

Laing R., Kikuchi T., Martinelli A., Tsai I. J., Beech R. N., Redman E., et al. (2013). The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 14:R88. PubMed PMC

Lecova L., Ruzickova M., Laing R., Vogel H., Szotakova B., Prchal L., et al. (2015). Reliable reference gene selection for quantitative real time PCR in Haemonchus contortus. Mol. Biochem. Parasitol. 201 123–127. 10.1016/j.molbiopara.2015.08.001 PubMed DOI

Matouskova P., Lecova L., Laing R., Dimunova D., Vogel H., Stuchlikova L. R., et al. (2018). UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int. J. Parasitol. 8 420–429. 10.1016/j.ijpddr.2018.09.005 PubMed DOI PMC

Nguyen L. T., Kurz T., Preston S., Brueckmann H., Lungerich B., Herath H. M. P. D., et al. (2019). Phenotypic screening of the ‘Kurz-box’ of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasit. Vect. 12:191. PubMed PMC

Pan Y. O., Wen S. Y., Chen X. W., Gao X. W., Zeng X. C., Liu X. M., et al. (2020). UDP-glycosyltransferases contribute to spirotetramat resistance in Aphis gossypii Glover. Pestic. Biochem. Physiol. 166:104565. 10.1016/j.pestbp.2020.104565 PubMed DOI

Porto R. S., Pinheiro R. S. B., Rath S. (2020). Leaching of benzimidazole antiparasitics in soil columns and in soil columns amended with sheep excreta. Environ. Sci. Pollut. Res. Int. 24:130. PubMed

Prchal L., Podlipna R., Lamka J., Dedkova T., Skalova L., Vokral I., et al. (2016). Albendazole in environment: faecal concentrations in lambs and impact on lower development stages of helminths and seed germination. Environ. Sci. Pollut. Res. 23 13015–13022. 10.1007/s11356-016-6472-0 PubMed DOI

Roos M. H., Otsen M., Hoekstra R., Veenstra J. G., Lenstra J. A. (2004). Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 34 109–115. 10.1016/j.ijpara.2003.10.002 PubMed DOI

Schwarz E. M., Korhonen P. K., Campbell B. E., Young N. D., Jex A. R., Jabbar A., et al. (2013). The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 14:R89. PubMed PMC

Shalaby H. A. (2013). Anthelmintics Resistance; How to Overcome it? Iran. J. Parasitol. 8 18–32. PubMed PMC

Stasiuk S. J., MacNevin G., Workentine M. L., Gray D., Redman E., Bartley D., et al. (2019). Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int. J. Parasitol. 11 13–29. 10.1016/j.ijpddr.2019.09.001 PubMed DOI PMC

Stuchlikova L., Jirasko R., Vokral I., Lamka J., Spulak M., Holcapek M., et al. (2013). Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal. Bioanal. Chem. 405 1705–1712. 10.1007/s00216-012-6584-4 PubMed DOI

Stuchlíková L. R., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., et al. (2018). Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. 8 50–58. 10.1016/j.ijpddr.2018.01.005 PubMed DOI PMC

Stuchlikova L. R., Skalova L., Szotakova B., Syslova E., Vokral I., Vanek T., et al. (2018). Biotransformation of flubendazole and fenbendazole and their effects in the ribwort plantain (Plantago lanceolata). Ecotoxicol. Environ. Saf. 147 681–687. 10.1016/j.ecoenv.2017.09.020 PubMed DOI

Varady M., Cudekova P., Corba J. (2007). In vitro detection of benzimidazole resistance in Haemonchus contortus: egg hatch test versus larval development test. Vet. Parasitol. 149 104–110. PubMed

Vokral I., Jirasko R., Stuchlikova L., Bartikova H., Szotakova B., Lamka J., et al. (2013). Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet. Parasitol. 196 373–381. 10.1016/j.vetpar.2013.03.018 PubMed DOI

Yu Q., Powles S. (2014). Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol. 166 1106–1118. 10.1104/pp.114.242750 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...