Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: Sex differences, resistance-related differences and the identification of new metabolites
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29414106
PubMed Central
PMC6114105
DOI
10.1016/j.ijpddr.2018.01.005
PII: S2211-3207(17)30141-0
Knihovny.cz E-zdroje
- Klíčová slova
- Anthelmintics, Benzimidazole, Drug metabolism, Drug resistance, Nematode,
- MeSH
- albendazol analogy a deriváty metabolismus farmakologie MeSH
- anthelmintika metabolismus farmakologie MeSH
- biochemické jevy MeSH
- biotransformace MeSH
- Haemonchus metabolismus MeSH
- hemonchóza farmakoterapie parazitologie veterinární MeSH
- léková rezistence * MeSH
- mebendazol analogy a deriváty metabolismus farmakologie MeSH
- nemoci ovcí farmakoterapie parazitologie MeSH
- ovce parazitologie MeSH
- sexuální faktory MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albendazol MeSH
- albendazole sulfoxide MeSH Prohlížeč
- anthelmintika MeSH
- flubendazole MeSH Prohlížeč
- mebendazol MeSH
Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite found in small ruminants, has a great ability to develop resistance to anthelmintic drugs. We studied the biotransformation of the three benzimidazole anthelmintics: albendazole (ABZ), ricobendazole (albendazole S-oxide; RCB) and flubendazole (FLU) in females and males of H. contortus in both a susceptible ISE strain and resistant IRE strain. The ex vivo cultivation of living nematodes in culture medium with or without the anthelmintics was used. Ultrasensitive UHPLC/MS/MS analysis revealed 9, 7 and 12 metabolites of ABZ, RCB and FLU, respectively, with most of these metabolites now described in the present study for the first time in H. contortus. The structure of certain metabolites shows the presence of biotransformation reactions not previously reported in nematodes. There were significant qualitative and semi-quantitative differences in the metabolites formed by male and female worms. In most cases, females metabolized drugs more extensively than males. Adults of the IRE strain were able to form many more metabolites of all the drugs than adults of the ISE strain. Some metabolites were even found only in adults of the IRE strain. These findings suggest that increased drug metabolism may play a role in resistance to benzimidazole drugs in H. contortus.
Zobrazit více v PubMed
Arguello-Garcia R., Cruz-Soto M., Gonzalez-Trejo R., Paz-Maldonado L.M.T., Bazan-Tejeda M.L., Mendoza-Hernandez G., Ortega-Pierres G. An antioxidant response is involved in resistance of Giardia duodenalis to albendazole. Front. Microbiol. 2015;6:286. PubMed PMC
Bartikova H., Skalova L., Lamka J., Szotakova B., Varady M. The effects of flubendazole and its metabolites on the larval development of Haemonchus contortus (Nematoda: Trichostrongylidae): an in vitro study. Helminthologia. 2010;47:269–272.
Brophy P.M., Mackintosh N., Morphew R.M. Anthelmintic metabolism in parasitic helminths: proteomic insights. Parasitology. 2012;139:1205–1217. PubMed
Chaudhry U., Redman E.M., Raman M., Gilleard J.S. Genetic evidence for the spread of a benzimidazole resistance mutation across southern India from a single origin in the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2015;45:721–728. PubMed
Choe K.P., Leung C.K., Miyamoto M.M. Unique structure and regulation of the nematode detoxification gene regulator, SKN-1: implications to understanding and controlling drug resistance. Drug Metab. Rev. 2012;44:209–223. PubMed PMC
Cvilink V., Skalova L., Szotakova B., Lamka J., Kostiainen R., Ketola R.A. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal. Bioanal. Chem. 2008;391:337–343. PubMed
Cvilink V., Szotakova B., Vokral I., Bartikova H., Lamka J., Skalova L. Liquid chromatography/mass spectrometric identification of benzimidazole anthelminthics metabolites formed ex vivo by Dicrocoelium dendriticum. Rapid Commun. Mass Spectr. 2009;23:2679–2684. PubMed
Fernando L., Furtado V., Bello A., Rabelo E.M.L. Benzimidazole resistance in helminths: from problem to diagnosis. Acta Trop. 2016;162:95–102. PubMed
Geary T.G. Are new anthelmintics needed to eliminate human helminthiases? Curr. Opin. Infect. Dis. 2012;25:709–717. PubMed
Howard J.T., O'Nan A.T., Maltecca C., Baynes R.E., Ashwell M.S. Differential gene expression across breed and sex in commercial pigs administered fenbendazole and flunixin meglumine. PLoS One. 2015;10 PubMed PMC
Igboeli O.O., Burka J.F., Fast M.D. Sea lice population and sex differences in P-glycoprotein expression and emamectin benzoate resistance on salmon farms in the Bay of Fundy, New Brunswick, Canada. Pest Manag. Sci. 2014;70:905–914. PubMed
Jones L.M., Flemming A.J., Urwin P.E. NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem. J. 2015;466:37–44. PubMed
Kaminsky R., Ducray P., Jung M., Clover R., Rufener L., Bouvier J., Weber S.S., Wenger A., Wieland-Berghausen S., Goebel T., Gauvry N., Pautrat F., Skripsky T., Froelich O., Komoin-Oka C., Westlund B., Sluder A., Maeser P. A new class of anthelmintics effective against drug-resistant nematodes. Nature. 2008;452 176–U119. PubMed
Kotze A.C., Prichard R.K. In: Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Haemonchus contortus and haemonchosis - past, present and future trends. Gasser R.B., VonSamsonHimmelstjerna G., editors. vol. 93. 2016. pp. 397–428. PubMed
Laing S.T., Ivens A., Laing R., Ravikumar S., Butler V., Woods D.J., Gilleard J.S. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem. J. 2010;432:505–514. PubMed
Lifschitz A., Lanusse C., Alvarez L. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants. New Zealand Vet. J. 2017;65:176–184. PubMed
Lubega G.W., Prichard R.K. Specific interaction of benzimidazole anthelmintics with tubulin-high affinity binding and benzimidazole resistance in Haemonchus contortus. Mol. Biochem. Parasitol. 1990;38:221–232. PubMed
Lubega G.W., Prichard R.K. Beta-tubulin and benzimidazole resistance in the sheep nematode Haemonchus contortus. Mol. Biochem. Parasitol. 1991;47:129–137. PubMed
Matouskova P., Vokral I., Lamka J., Skalova L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. PubMed
Podlipna R., Skalova L., Seidlova H., Szotakova B., Kubicek V., Stuchlikova L., Jirasko R., Vanek T., Vokral I. Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) as a potential tool for their detoxification in environment. Biores. Technol. 2013;144:216–224. PubMed
Raza A., Lamb J., Chambers M., Hunt P.W., Kotze A.C. Larval development assays reveal the presence of sub-populations showing high- and low-level resistance in a monepantel (Zolvix (R))-resistant isolate of Haemonchus contortus. Vet. Parasitol. 2016;220:77–82. PubMed
Raza A., Bagnall N.H., Jabbar A., Kopp S.R., Kotze A.C. Increased expression of ATP binding cassette transporter genes following exposure of Haemonchus contortus larvae to a high concentration of monepantel in vitro. Parasites Vectors. 2016;9:522. PubMed PMC
Redman E., Sargison N., Whitelaw F., Jackson F., Morrison A., Bartley D.J., Gilleard J.S. Introgression of ivermectin resistance genes into a susceptible Haemonchus contortus strain by multiple backcrossing. PLoS Pathog. 2012;8:e1002534. PubMed PMC
Roos M.H., Otsen M., Hoekstra R., Veenstra J.G., Lenstra J.A. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2004;34:109–115. PubMed
Sales N., Love S. Resistance of Haemonchus sp to monepantel and reduced efficacy of a derquantel/abamectin combination confirmed in sheep in NSW, Australia. Vet. Parasitol. 2016;228:193–196. PubMed
Srivastava M., Misra-Bhattacharya S. Overcoming drug resistance for macro parasites. Future Microbiol. 2015;10:1783–1789. PubMed
Stuchlikova L., Jirasko R., Skalova L., Pavlik F., Szotakova B., Holcapek M., Vanek T., Podlipna R. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia) Chemosphere. 2016;157:10–17. PubMed
Stuchlikova L., Jirasko R., Vokral I., Lamka J., Spulak M., Holcapek M., Szotakova B., Bartikova H., Pour M., Skalova L. Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal. Bioanal. Chem. 2013;405:1705–1712. PubMed
Taman A., Azab M. Present-day anthelmintics and perspectives on future new targets. Parasitol. Res. 2014;113:2425–2433. PubMed
Vokral I., Bartikova H., Prchal L., Stuchlikova L., Skalova L., Szotakova B., Lamka J., Varady M., Kubicek V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. PubMed
Vokral I., Jirasko R., Stuchlikova L., Bartikova H., Szotakova B., Lamka J., Varady M., Skalova L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet. Parasitol. 2013;196:373–381. PubMed
Waxman D.J., Holloway M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 2009;76:215–228. PubMed PMC
Yilmaz E., Ramunke S., Demeler J., Krucken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate. Int. J. Parasitol. Drug. Drug Resist. 2017;7:362–369. PubMed PMC
Biotransformation of anthelmintics in nematodes in relation to drug resistance
UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus