Phylogenetic and transcriptomic study of aldo-keto reductases in Haemonchus contortus and their inducibility by flubendazole

. 2024 Aug ; 25 () : 100555. [epub] 20240708

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38996597
Odkazy

PubMed 38996597
PubMed Central PMC11296255
DOI 10.1016/j.ijpddr.2024.100555
PII: S2211-3207(24)00036-8
Knihovny.cz E-zdroje

Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.

Zobrazit více v PubMed

Arsenopoulos K.V., Fthenakis G.C., Katsarou E.I., Papadopoulos E. Haemonchosis: a challenging parasitic infection of sheep and goats. Animals. 2021;11 PubMed PMC

Bartikova H., Krizova V., Lamka J., Kubicek V., Skalova L., Szotakova B. Flubendazole metabolism and biotransformation enzymes activities in healthy sheep and sheep with haemonchosis. J. Vet. Pharmacol. Therapeut. 2010;33:56–62. PubMed

Bauman D.R., Steckelbroeck S., Penning T.M. The roles of aldo-keto reductases in steroid hormone action. Drug News Perspect. 2004;17:563–578. PubMed

Besier R.B., Kahn L.P., Sargison N.D., Van Wyk J.A. In: Advances in Parasitology. Gasser R.B., Samson-Himmelstjerna G.V., editors. Academic Press; 2016. Chapter six - diagnosis, treatment and management of Haemonchus contortus in small ruminants; pp. 181–238. PubMed

Buzy A., Alain C., Harrington J., Lesuisse D., Mikol V., Bruhn D.F., Maule A.G., Guillemot J.C. Peptidomics of Haemonchus contortus. ACS Omega. 2021;6:10288–10305. PubMed PMC

Cancela M., Paes J.A., Moura H., Barr J.R., Zaha A., Ferreira H.B. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci. Rep. 2019;9 PubMed PMC

Carson A., Reichel R., Bell S., Collins R., Smith J., Bartley D. Haemonchus contortus: an overview. Vet. Rec. 2023;192:26–28. PubMed

Cvilink V., Kubicek V., Nobilis M., Krizova V., Szotakova B., Lamka J., Varady M., Kubenova M., Novotna R., Gavelova M., Skalova L. Biotransfonnation of flubendazole and selected model xenobiotics in Haemonchus contortus. Vet. Parasitol. 2008;151:242–248. PubMed

Cvilink V., Skalova L., Szotakova B., Lamka J., Kostiainen R., Ketola R.A. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal. Bioanal. Chem. 2008;391:337–343. PubMed

Díaz-Viraqué F., Chiribao M.L., Paes-Vieira L., Machado M.R., Faral-Tello P., Tomasina R., Trochine A., Robello C. New insights into the role of the Trypanosoma cruzi aldo-keto reductase TcAKR. Pathogens. 2023;12 PubMed PMC

Dimunova D., Navratilova M., Kellerova P., Ambroz M., Skalova L., Matouskova P. The induction and inhibition of UDP-glycosyltransferases in Haemonchus contortus and their role in the metabolism of albendazole. Int J Parasitol Drugs Drug Resist. 2022;19:56–64. PubMed PMC

Doyle S.R., Laing R., Bartley D., Morrison A., Holroyd N., Maitland K., Antonopoulos A., Chaudhry U., Flis I., Howell S., McIntyre J., Gilleard J.S., Tait A., Mable B., Kaplan R., Sargison N., Britton C., Berriman M., Devaney E., Cotton J.A. Genomic landscape of drug response reveals mediators of anthelmintic resistance. Cell Rep. 2022;41 PubMed PMC

Doyle S.R., Tracey A., Laing R., Holroyd N., Bartley D., Bazant W., Beasley H., Beech R., Britton C., Brooks K., Chaudhry U., Maitland K., Martinelli A., Noonan J.D., Paulini M., Quail M.A., Redman E., Rodgers F.H., Sallé G., Shabbir M.Z., Sankaranarayanan G., Wit J., Howe K.L., Sargison N., Devaney E., Berriman M., Gilleard J.S., Cotton J.A. Genomic and transcriptomic variation defines the chromosome-scale assembly of Haemonchus contortus, a model gastrointestinal worm. Commun. Biol. 2020;3 PubMed PMC

Felsenstein J. CONFIDENCE-LIMITS on phylogenies - an approach using the bootstrap. Evolution. 1985;39:783–791. PubMed

Garavaglia P.A., Cannata J.J.B., Ruiz A.M., Maugeri D., Duran R., Galleano M., García G.A. Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity. Mol. Biochem. Parasitol. 2010;173:132–141. PubMed

Garavaglia P.A., Rubio M.F., Laverrière M., Tasso L.M., Fichera L.E., Cannata J.J.B., García G.A. Trypanosoma cruzi: death phenotypes induced by ortho-naphthoquinone substrates of the aldo-keto reductase (TcAKR). Role of this enzyme in the mechanism of action of β-lapachone. Parasitology. 2018;145:1251–1259. PubMed

Gilleard J.S., Redman E. Genetic diversity and population structure of Haemonchus contortus. Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends. 2016;93:31–68. PubMed

González L., García-Huertas P., Triana-Chávez O., García G.A., Murta S.M.F., Mejía-Jaramillo A.M. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Mol. Microbiol. 2017;106:704–718. PubMed

Guillou F., Roger E., Moné Y., Rognon A., Grunau C., Thréron A., Mitta G., Coustau C., Gourbal B.E.F. Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol. Biochem. Parasitol. 2007;155:45–56. PubMed

Guo H., Del Corso A., Huang L.Q., Mura U., Pelosi P., Wang C.Z. Aldehyde reductase activity in the antennae of Helicoverpa armigera. Insect Mol. Biol. 2014;23:330–340. PubMed

Huang Q., Cao J., Zhou Y.Z., Huang J.W., Gong H.Y., Zhang H.S., Zhu X.Q., Zhou J.L. Babesia microti aldo-keto reductase-like protein involved in antioxidant and anti-parasite response. Front. Microbiol. 2017;8 PubMed PMC

Jin Y., Penning T.M. Aldo-keto reductases and bioactivation/detoxication. Annu. Rev. Pharmacol. Toxicol. 2007;47:263–292. PubMed

Kellerova P., Navratilova M., Nguyen L.T., Dimunova D., Stuchlikova L.R., Skalova L., Matouskova P. UDP-glycosyltransferases and albendazole metabolism in the juvenile stages of Haemonchus contortus. Front. Physiol. 2020;11 PubMed PMC

Kellerová P., Raisová Stuchlíková L., Matoušková P., Štěrbová K., Lamka J., Navrátilová M., Vokřál I., Szotáková B., Skálová L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation in Haemonchus contortus adults. Vet. Res. 2020;51:94. PubMed PMC

Kenyon F., Jackson F. Targeted flock/herd and individual ruminant treatment approaches. Vet. Parasitol. 2012;186:10–17. PubMed

Kotze A.C., Prichard R.K. In: Advances in Parasitology. Gasser R.B., Samson-Himmelstjerna G.V., editors. Academic Press; 2016. Chapter nine - anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis; pp. 397–428. PubMed

Laing R., Kikuchi T., Martinelli A., Tsai I.J., Beech R.N., Redman E., Holroyd N., Bartley D.J., Beasley H., Britton C., Curran D., Devaney E., Gilabert A., Hunt M., Jackson F., Johnston S.L., Kryukov I., Li K., Morrison A.A., Reid A.J., Sargison N., Saunders G.I., Wasmuth J.D., Wolstenholme A., Berriman M., Gilleard J.S., Cotton J.A. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14 PubMed PMC

Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. PubMed

Lecova L., Ruzickova M., Laing R., Vogel H., Szotakova B., Prchal L., Lamka J., Vokral I., Skalova L., Matouskova P. Reliable reference gene selection for quantitative real time PCR in Haemonchus contortus. Mol. Biochem. Parasitol. 2015;201:123–127. PubMed

Li D., Dewer Y., Qu C., Li F.Q., Luo C. Metabolomics profiling and AKR characterization during paurometabolous development of Corythucha ciliata (Hemiptera: Tingidae) J. Insect Sci. 2019;19 PubMed PMC

Liu Y., Wang X.M., Luo X.P., Wang R., Zhai B.T., Wang P.L., Li J.Y., Yang X.Y. Transcriptomics and proteomics of Haemonchus contortus in response to ivermectin treatment. Animals. 2023;13 PubMed PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. PubMed

Lu S., Wang J., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Marchler G.H., Song J.S., Thanki N., Yamashita R.A., Yang M., Zhang D., Zheng C., Lanczycki C.J., Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48:D265–D268. PubMed PMC

Matouskova P., Vokral I., Lamka J., Skalova L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. PubMed

Madeira, F., Pearce, M., Tivey, A.R.N., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., Lopez, R., 2022. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucl. Acids Res. 50 (W1) W276–W279. PubMed PMC

Nguyen L.T., Kurz T., Preston S., Brueckmann H., Lungerich B., Herath H.M.P.D., Koehler A.V., Wang T., Skálová L., Jabbar A., Gasser R.B. Phenotypic screening of the ‘Kurz-box’ of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasites Vectors. 2019;12:191. PubMed PMC

Ostinelli G., Vijay J., Vohl M.C., Grundberg E., Tchernof A. AKR1C2 and AKR1C3 expression in adipose tissue: association with body fat distribution and regulatory variants. Mol. Cell. Endocrinol. 2021;527 PubMed PMC

Penning T.M. Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2014;27:1901–1917. PubMed PMC

Penning T.M. The aldo-keto reductases (AKRs): overview. Chem. Biol. Interact. 2015;234:236–246. PubMed PMC

Penning T.M., Jonnalagadda S., Trippier P.C., Rizner T.L. Aldo-keto reductases and cancer drug resistance. Pharmacol. Rev. 2021;73:1150–1171. PubMed PMC

Penning T.M., Wangtrakuldee P., Auchus R.J. Structural and functional biology of aldo-keto reductase steroid-transforming enzymes. Endocr. Rev. 2019;40:447–475. PubMed PMC

Robert X., Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324. PubMed PMC

Roberts A.J., Dunne J., Scullion P., Norval S., Fairlamb A.H. A role for trypanosomatid aldo-keto reductases in methylglyoxal, prostaglandin and isoprostane metabolism. Biochem. J. 2018;475:2593–2610. PubMed PMC

Rohde K., Federbusch M., Horstmann A., Keller M., Villringer A., Stumvoll M., Tönjes A., Kovacs P., Böttcher Y. Genetic variants in AKR1B10 associate with human eating behavior. BMC Genet. 2015;16 PubMed PMC

Roos M.H., Otsen M., Hoekstra R., Veenstra J.G., Lenstra J.A. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2004;34:109–115. PubMed

Ruiz F.X., Porté S., Parés X., Farrés J. Biological role of aldo-keto reductases in retinoic acid biosynthesis and signaling. Front. Pharmacol. 2012;3 PubMed PMC

Stuchlikova L.R., Matouskova P., Vokral I., Lamka J., Szotakova B., Seckarova A., Dimunova D., Nguyen L.T., Varady M., Skalova L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. International Journal for Parasitology-Drugs and Drug Resistance. 2018;8:50–58. PubMed PMC

Stuchlíková L.R., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., Dimunová D., Nguyen L.T., Várady M., Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol.: Drugs Drug Resist. 2018;8:50–58. PubMed PMC

Štěrbová K., Rychlá N., Matoušková P., Skálová L., Raisová Stuchlíková L. Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance. Vet. Res. 2023;54:19. PubMed PMC

Tamura K., Stecher G., Kumar S. MEGA11 molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. PubMed PMC

Tuersong W., Liu X., Wang Y.F., Wu S.M., Qin P.X., Zhu S.N., Liu F., Wang C.Q., Hu M. Comparative metabolome analyses of ivermectin-resistant and -susceptible strains of Haemonchus contortus. Animals. 2023;13 PubMed PMC

Vanwyk J.A., Gerber H.M., Groeneveld H.T. A technique for the recovery of nematodes from ruminants by migration from gastrointestinal ingesta gelled in agar-large scale application Onderstepoort. Journal of Veterinary Research. 1980;47:147–158. PubMed

Varady M., Cudekova P., Corba J. In vitro detection of benzimidazole resistance in Haemonchus contortus: egg hatch test versus larval development test. Vet. Parasitol. 2007;149:104–110. PubMed

Vogeley C., Kress S., Lang D.T., Vogel C.F.A., Hartung F., Brenden H., Nakamura M., Grether-Beck S., Rossi A., Krutmann J., Schikowski T., Haarmann-Stemmann T. A gene variant of AKR1C3 contributes to interindividual susceptibilities to atopic dermatitis triggered by particulate air pollution. Allergy. 2023;78:1372–1375. PubMed PMC

Vokařál I., Křížová V., Lamka J., Kubíček V., Szotáková B., Várady M., Nobilis M., Skálová L. Effect of flubendazole on biotransformation enzymes activities in Haemonchus contortus. Open Parasitol. J. 2010;4:24–28.

Vokral I., Bartikova H., Prchal L., Stuchlikova L., Skalova L., Szotakova B., Lamka J., Varady M., Kubicek V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. PubMed

Wang T., Ma G.X., Ang C.S., Korhonen P.K., Stroehlein A.J., Young N.D., Hofmann A., Chang B.C.H., Williamson N.A., Gasser R.B. The developmental phosphoproteome of Haemonchus contortus. J. Proteom. 2020;213 PubMed

Wang T., Ma G.X., Ang C.S., Korhonen P.K., Xu R., Nie S., Koehler A.V., Simpson R.J., Greening D.W., Reid G.E., Williamson N.A., Gasser R.B. Somatic proteome of Haemonchus contortus. Int. J. Parasitol. 2019;49:311–320. PubMed

Yamamoto K., Endo S. Novel aldo-keto reductase AKR2E9 regulates aldehyde content in the midgut and antennae of the silkworm (Bombyx mori) Archives of Insect Biochemistry and Physiology. 2022 PubMed

Yamamoto K., Higashiura A., Suzuki M., Shiotsuki T., Sugahara R., Fujii T., Nakagawa A. Structural characterization of an aldo-keto reductase (AKR2E5) from the silkworm Bombyx mori. Biochem. Biophys. Res. Commun. 2016;474:104–110. PubMed

Yamamoto K., Wilson D.K. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori. Arch. Biochem. Biophys. 2013;538:156–163. PubMed

Yamamoto K., Yamaguchi M., Endo S. Functional characterization of an aldose reductase (bmALD1) obtained from the silkworm Bombyx mori. Insect Mol. Biol. 2020;29:490–497. PubMed

Zhang W., Yu H., Lv Y., Bushley K.E., Wickham J.D., Gao S., Hu S., Zhao L., Sun J. Gene family expansion of pinewood nematode to detoxify its host defence chemicals. Mol. Ecol. 2020;29:940–955. PubMed

Zhao J., Qiu Y.L., Wang L., Li Z.D., Xie X.B., Lu Y., Setchell K.D.R., Cheng Y., Xing Q.H., Wang J.S. Recurrent AKR1D1 c.580-13T>A Variant A Cause of D4-3-Oxosteroid-5b-Reductase Deficiency. J. Mol. Diag. 2023;25:227–233. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Biotransformation of anthelmintics in nematodes in relation to drug resistance

. 2025 Jan 07 ; 27 () : 100579. [epub] 20250107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...