Phenotypic screening of the 'Kurz-box' of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV260416
Charles University
EFSA-CDN
Charles University
PubMed
31039802
PubMed Central
PMC6492431
DOI
10.1186/s13071-019-3426-7
PII: 10.1186/s13071-019-3426-7
Knihovny.cz E-zdroje
- Klíčová slova
- Anthelmintic, Haemonchus contortus, Larval motility and development in vitro, Phenotypic screening,
- MeSH
- anthelmintika chemie farmakologie MeSH
- fenotyp MeSH
- Haemonchus účinky léků růst a vývoj MeSH
- inhibiční koncentrace 50 MeSH
- larva účinky léků růst a vývoj MeSH
- preklinické hodnocení léčiv MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anthelmintika MeSH
BACKGROUND: Due to anthelmintic resistance problems, there is a need to discover and develop new drugs for the treatment and control of economically important and pathogenic nematodes of livestock animals. With this focus in mind, we screened 236 compounds from a library (called the 'Kurz-box') representing chemically diverse classes such as heterocyclic compounds (e.g. thiazoles, pyrroles, quinolines, pyrimidines, benzo[1,4]diazepines), hydoxamic acid-based metalloenzyme inhibitors, peptidomimetics (bis- and tris-pyrimidoneamides, alkoxyamides) and various intermediates on Haemonchus contortus, one of the most important parasitic nematodes of ruminants. METHODS: In the present study, we tested these compounds, and measured the inhibition of larval motility and development of exsheathed third-stage (xL3) and fourth-stage (L4) larvae of H. contortus using an optimised, whole-organism phenotypic screening assay. RESULTS: Of the 236 compounds, we identified two active compounds (called BLK127 and HBK4) that induced marked phenotypic changes in the worm in vitro. Compound BLK127 induced an 'eviscerated' phenotype in the xL3 stage and also inhibited L4 development. Compound HBK4 exerted a 'curved' phenotype in both xL3s and L4s. CONCLUSIONS: The findings from this study provide a basis for future work on the chemical optimisation of these compounds, on assessing the activity of optimised compounds on adult stages of H. contortus both in vitro and in vivo (in the host animal) and against other parasitic worms of veterinary and medical importance.
Zobrazit více v PubMed
Besier RB, Kahn LP, Sargison ND, van Wyk JA. Diagnosis, treatment and management of Haemonchus contortus in small ruminants. Adv Parasitol. 2016;93:181–238. doi: 10.1016/bs.apar.2016.02.024. PubMed DOI
Gilleard JS. Haemonchus contortus as a paradigm and model to study anthelmintic drug resistance. Parasitology. 2013;140:1506–1522. doi: 10.1017/S0031182013001145. PubMed DOI
Gilleard JS, Redman E. Genetic diversity and population structure of Haemonchus contortus. Adv Parasitol. 2016;93:31–68. doi: 10.1016/bs.apar.2016.02.009. PubMed DOI
Doyle SR, Laing R, Bartley DJ, Britton C, Chaudhry U, Gilleard JS, et al. A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biol Evol. 2018;10:396–409. doi: 10.1093/gbe/evx269. PubMed DOI PMC
Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428. doi: 10.1016/bs.apar.2016.02.012. PubMed DOI
Van den Brom R, Moll L, Kappert C, Vellema P. Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol. 2015;209:278–280. doi: 10.1016/j.vetpar.2015.02.026. PubMed DOI
Sales N, Love S. Resistance of Haemonchus sp. to monepantel and reduced efficacy of a derquantel/abamectin combination confirmed in sheep in NSW, Australia. Vet Parasitol. 2016;228:193–196. doi: 10.1016/j.vetpar.2016.08.016. PubMed DOI
Kaplan RM, Vidyashankar AN. An inconvenient truth: global worming and anthelmintic resistance. Vet Parasitol. 2012;186:70–78. doi: 10.1016/j.vetpar.2011.11.048. PubMed DOI
Papadopoulos E. Anthelmintic resistance in sheep nematodes. Small Rumin Res. 2008;76:99–103. doi: 10.1016/j.smallrumres.2007.12.012. DOI
Preston S, Jabbar A, Nowell C, Joachim A, Ruttkowski B, Baell J, et al. Low cost whole-organism screening of compounds for anthelmintic activity. Int J Parasitol. 2015;45:333–343. doi: 10.1016/j.ijpara.2015.01.007. PubMed DOI
Preston S, Jiao Y, Jabbar A, McGee SL, Laleu B, Willis P, et al. Screening of the ‘Pathogen Box’ identifies an approved pesticide with major anthelmintic activity against the barber’s pole worm. Int J Parasitol Drugs Drug Resist. 2016;6:329–334. doi: 10.1016/j.ijpddr.2016.07.004. PubMed DOI PMC
Herath DHMP, Preston S, Hofmann A, Davis RA, Koehler AV, Chang BCH, et al. Screening of a small, well-curated natural product-based library identifies two rotenoids with potent nematocidal activity against Haemonchus contortus. Vet Parasitol. 2017;244:172–175. doi: 10.1016/j.vetpar.2017.07.005. PubMed DOI
Jiao Y, Preston S, Koehler AV, Stroehlein AJ, Chang BCH, Simpson KJ, et al. Screening of the ‘Stasis Box’ identifies two kinase inhibitors under pharmaceutical development with activity against Haemonchus contortus. Parasit Vectors. 2017;10:323. doi: 10.1186/s13071-017-2246-x. PubMed DOI PMC
Preston S, Jiao Y, Baell JB, Keiser J, Crawford S, Koehler AV, et al. Screening of the ‘Open Scaffolds’ collection from Compounds Australia identifies a new chemical entity with anthelmintic activities against different developmental stages of the barber’s pole worm and other parasitic nematodes. Int J Parasitol Drugs Drug Resist. 2017;7:286–294. doi: 10.1016/j.ijpddr.2017.05.004. PubMed DOI PMC
Preston S, Korhonen PK, Mouchiroud L, Cornaglia M, McGee SL, Young ND, et al. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain. FASEB J. 2017;31:4515–4532. doi: 10.1096/fj.201700288R. PubMed DOI
Herath DHMP, Song H, Preston S, Jabbar A, Wang T, McGee SL, et al. Arylpyrrole and fipronil analogues that inhibit the motility and/or development of Haemonchus contortus in vitro. Int J Parasitol Drugs Drug Resist. 2018;8:379–385. doi: 10.1016/j.ijpddr.2018.06.002. PubMed DOI PMC
Schwarz EM, Korhonen PK, Campbell BE, Young ND, Jex AR, Jabbar A, et al. The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biol. 2013;14:R89. doi: 10.1186/gb-2013-14-8-r89. PubMed DOI PMC
Sommerville RI. The development of Haemonchus contortus to the fourth stage in vitro. J Parasitol. 1966;52:127–136. doi: 10.2307/3276403. PubMed DOI
Veglia F. The anatomy and life-history of Haemonchus contortus (Rud.) Rep Dir Vet Res. 1915;3–4:347–500.
Jiao Y, Preston S, Garcia-Bustos JF, Baell JB, Ventura S, Le T, et al. Tetrahydroquinoxalines induce a lethal evisceration phenotype in Haemonchus contortus in vitro. Int J Parasitol Drugs Drug Resist. 2019;9:59–71. doi: 10.1016/j.ijpddr.2018.12.007. PubMed DOI PMC
Wharton DA, Sommerville RI. The structure of the excretory system of the infective larva of Haemonchus contortus. Int J Parasitol. 1984;14:591–600. doi: 10.1016/0020-7519(84)90067-5. PubMed DOI
Rogers WP. Enzymes in the exsheathing fluid of nematodes and their biological significance. Int J Parasitol. 1982;12:495–502. doi: 10.1016/0020-7519(82)90043-1. PubMed DOI
Aguinaldo AMA, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature. 1997;387:489–493. doi: 10.1038/387489a0. PubMed DOI
Lažetić V, Fay DS. Molting in C. elegans. Worm. 2017;6:e1330246. doi: 10.1080/21624054.2017.1330246. PubMed DOI PMC
Ma G, Wang T, Korhonen PK, Ang CS, Williamson NA, Young ND, et al. Molecular alterations during larval development of Haemonchus contortus in vitro are under tight post-transcriptional control. Int J Parasitol. 2018;48:763–772. doi: 10.1016/j.ijpara.2018.03.008. PubMed DOI
Sommerville RI, Murphy CR. Reversal of order of ecdysis in Haemonchus contortus (Nematoda) J Parasitol. 1983;69:368–371. doi: 10.2307/3281236. PubMed DOI
Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin Cell Dev Biol. 2005;16:175–182. doi: 10.1016/j.semcdb.2005.01.004. PubMed DOI
Li T-M, Chen J, Li X, Ding X-J, Wu Y, Zhao L-F, et al. Absolute quantification of a steroid hormone that regulates development in Caenorhabditis elegans. Anal Chem. 2013;85:9281–9287. doi: 10.1021/ac402025c. PubMed DOI
Jiao Y, Preston S, Song H, Jabbar A, Liu Y, Baell J, et al. Assessing the anthelmintic activity of pyrazole-5-carboxamide derivatives against Haemonchus contortus. Parasit Vectors. 2017;10:1–7. doi: 10.1186/s13071-016-1943-1. PubMed DOI PMC
Page AP. The nematode cuticle: synthesis, modification and mutants. In: Kennedy MW, Harnett W, editors. Parasitic Nematodes: Molecular Biology, Biochemistry, and Immunology. Wallingford: CABI; 2001. pp. 167–194.
Martínez-Ortíz-de-Montellano C, Arroyo-López C, Fourquaux I, Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H. Scanning electron microscopy of Haemonchus contortus exposed to tannin-rich plants under in vivo and in vitro conditions. Exp Parasitol. 2013;133:281–286. doi: 10.1016/j.exppara.2012.11.024. PubMed DOI
Hellerer T, Axäng C, Brackmann C, Hillertz P, Pilon M, Enejder A. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci USA. 2007;104:14658–14663. doi: 10.1073/pnas.0703594104. PubMed DOI PMC
Folick A, Min W, Wang MC. Label-free imaging of lipid dynamics using coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy. Curr Opin Genet Dev. 2011;21:585–590. doi: 10.1016/j.gde.2011.09.003. PubMed DOI PMC
Yi YH, Chien CH, Chen WW, Ma TH, Liu KY, Chang YS, et al. Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy. J Biomed Opt. 2014;19:01101. doi: 10.1117/1.JBO.19.3.036013. PubMed DOI
Page AP, Stepek G, Winter AD, Pertab D. Enzymology of the nematode cuticle: a potential drug target? Int J Parasitol Drugs Drug Resist. 2014;4:133–141. doi: 10.1016/j.ijpddr.2014.05.003. PubMed DOI PMC
UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus