Short-chain dehydrogenases in Haemonchus contortus: changes during life cycle and in relation to drug-resistance

. 2023 Mar 07 ; 54 (1) : 19. [epub] 20230307

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36882840

Grantová podpora
20-14581Y Grantová Agentura České Republiky
194421 Grantová Agentura, Univerzita Karlova
SVV 260 550 Univerzita Karlova v Praze
CZ.02.1.01/ 0.0/0.0/16_019/0000841 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 36882840
PubMed Central PMC9993613
DOI 10.1186/s13567-023-01148-y
PII: 10.1186/s13567-023-01148-y
Knihovny.cz E-zdroje

Short-chain dehydrogenases/reductases (SDRs) regulate the activities of many hormones and other signaling molecules and participate in the deactivation of various carbonyl-bearing xenobiotics. Nevertheless, knowledge about these important enzymes in helminths remains limited. The aim of our study was to characterize the SDR superfamily in the parasitic nematode Haemonchus contortus. Genome localization of SDRs was explored, and phylogenetic analysis in comparison with SDRs from free-living nematode Caenorhabditis elegans and the domestic sheep (Ovis aries, a typical host of H. contortus) was constructed. The expression profile of selected SDRs during the life cycle along with differences between the drug-susceptible and drug-resistant strains, were also studied. Genome sequencing enabled the identification of 46 members of the SDR family in H. contortus. A number of genes have no orthologue in the sheep genome. In all developmental stages of H. contortus, SDR1, SDR3, SDR5, SDR6, SDR14, and SDR18 genes were the most expressed, although in individual stages, huge differences in expression levels were observed. A comparison of SDRs expression between the drug-susceptible and drug-resistant strains of H. contortus revealed several SDRs with changed expression in the resistant strain. Specifically, SDR1, SDR12, SDR13, SDR16 are SDR candidates related to drug-resistance, as the expression of these SDRs is consistently increased in most stages of the drug-resistant H. contortus. These findings revealing several SDR enzymes of H. contortus warrant further investigation.

Zobrazit více v PubMed

Short-chain Dehydrogenases/Reductases Databases. http://www.sdr-enzymes.org/

Beck KR, Kaserer T, Schuster D, Odermatt A. Virtual screening applications in short-chain dehydrogenase/reductase research. J Steroid Biochem Mol Biol. 2017;171:157–177. doi: 10.1016/j.jsbmb.2017.03.008. PubMed DOI PMC

Kisiela M, Faust A, Ebert B, Maser E, Scheidig AJ. Crystal structure and catalytic characterization of the dehydrogenase/reductase SDR family member 4 (DHRS4) from Caenorhabditis elegans. Febs J. 2018;285:275–293. doi: 10.1111/febs.14337. PubMed DOI

Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, Jornvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maserk E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact. 2009;178:94–98. doi: 10.1016/j.cbi.2008.10.040. PubMed DOI PMC

Kavanagh K, Jornvall H, Persson B, Oppermann U. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci. 2008;65:3895–3906. doi: 10.1007/s00018-008-8588-y. PubMed DOI PMC

Bray JE, Marsden BD, Oppermann U. The human short-chain dehydrogenase/reductase (SDR) superfamily: a bioinformatics summary. Chem Biol Interact. 2009;178:99–109. doi: 10.1016/j.cbi.2008.10.058. PubMed DOI

Patil KD, Bagade SB, Sharma SR, Hatware KV. Potential of herbal constituents as new natural leads against helminthiasis: a neglected tropical disease. Asian Pac J Trop Med. 2019;12:291–299. doi: 10.4103/1995-7645.262072. DOI

Idris OA, Wintola OA, Afolayan AJ. Helminthiases; prevalence, transmission, host-parasite interactions, resistance to common synthetic drugs and treatment. Heliyon. 2019;5:e01161. doi: 10.1016/j.heliyon.2019.e01161. PubMed DOI PMC

Zajickova M, Nguyen LT, Skalova L, Stuchlikova LR, Matouskova P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today. 2020;25:430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI

Stear MJ, Doligalska M, Donskow-Schmelter K. Alternatives to anthelmintics for the control of nematodes in livestock. Parasitology. 2007;134:139–151. doi: 10.1017/S0031182006001557. PubMed DOI

Kotze AC, Prichard RK. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Adv Parasitol. 2016;93:397–428. doi: 10.1016/bs.apar.2016.02.012. PubMed DOI

Lanusse C, Canton C, Virkel G, Alvarez L, Costa L, Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34:664–682. doi: 10.1016/j.pt.2018.05.005. PubMed DOI

Preston S, Jabbar A, Gasser RB. A perspective on genomic-guided anthelmintic discovery and repurposing using Haemonchus contortus. Infect Genet Evol. 2016;40:368–373. doi: 10.1016/j.meegid.2015.06.029. PubMed DOI

Ferrandi EE, Bertuletti S, Monti D, Riva S. Hydroxysteroid dehydrogenases: an ongoing story. Eur J Organ Chem. 2020;2020:4463–4473. doi: 10.1002/ejoc.202000192. DOI

Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the shortchain dehydrogenase/reductase superfamily. Drug Metab Rev. 2007;39:87–144. doi: 10.1080/03602530600969440. PubMed DOI

Matouskova P, Vokral I, Lamka J, Skalova L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. doi: 10.1016/j.pt.2016.02.004. PubMed DOI

WormBase Parasite databases. https://parasite.wormbase.org

Technical University of Denmark. https://dtu.biolib.com/DeepTMHMM/

Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, Krogh A. Winther O (2022) DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv. 2022;10:2022.

WormBase databases. https://wormbase.org

Tamura K, Stecher G, Kumar S. MEGA11 molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Le SQ, Gascuel O. An improved general amino acid replacement matrix. Mol Biol Evol. 2008;25:1307–1320. doi: 10.1093/molbev/msn067. PubMed DOI

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI

National Library of Medicine. https://www.ncbi.nlm.nih.gov/ PubMed

Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC

Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–699. doi: 10.1093/oxfordjournals.molbev.a003851. PubMed DOI

Roos MH, Otsen M, Hoekstra R, Veenstra JG, Lenstra JA. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int J Parasitol. 2004;34:109–115. doi: 10.1016/j.ijpara.2003.10.002. PubMed DOI

Varady M, Cudekova P, Corba J. In vitro detection of benzimidazole resistance in Haemonchus contortus: Egg hatch test versus larval development test. Vet Parasitol. 2007;149:104–110. doi: 10.1016/j.vetpar.2007.07.011. PubMed DOI

Nguyen LT, Kurz T, Preston S, Brueckmann H, Lungerich B, Herath HMPD, Koehler AV, Wang T, Skálová L, Jabbar A, Gasser RB. Phenotypic screening of the ‘Kurz-box’ of chemicals identifies two compounds (BLK127 and HBK4) with anthelmintic activity in vitro against parasitic larval stages of Haemonchus contortus. Parasit Vectors. 2019;12:191. doi: 10.1186/s13071-019-3426-7. PubMed DOI PMC

Vanwyk JA, Gerber HM, Groeneveld HT. A technique for the recovery of nematodes from ruminants by migration from gastrointestinal ingesta gelled in agar-large scale application. Onderstepoort J Vet Res. 1980;47:147–158. PubMed

Lecová L, Růžičková M, Laing R, Vogel H, Szotáková B, Prchal L, Lamka J, Vokřál I, Skálová L, Matoušková P. Reliable reference gene selection for quantitative real time PCR in Haemonchus contortus. Mol Biochem Parasitol. 2015;201:123–127. doi: 10.1016/j.molbiopara.2015.08.001. PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Morgan ER, Aziz NA, Blanchard A, Charlier J, Charvet C, Claerebout E, Geldhof P, Greer AW, Hertzberg H, Hodgkinson J, Hoglund J, Hoste H, Kaplan RM, Martinez-Valladares M, Mitchell S, Ploeger HW, Rinaldi L, von Samson-Himmelstjerna G, Sotiraki S, Schnyder M, Skuce P, Bartley D, Kenyon F, Thamsborg SM, Vineer HR, de Waal T, Williams AR, van Wyk JA, Vercruysse J. 100 questions in livestock helminthology research. Trends Parasitol. 2019;35:52–71. doi: 10.1016/j.pt.2018.10.006. PubMed DOI

Harder A. The Biochemistry of Haemonchus contortus and Other Parasitic Nematodes. In: Samson-Himmelstjerna G, editor. Gasser R. Present and future trends: Haemonchus contortus and haemonchosis—past; 2016. pp. 69–94. PubMed

Doyle SR, Laing R, Bartley DJ, Britton C, Chaudhry U, Gilleard JS, Holroyd N, Mable BK, Maitland K, Morrison AA, Tait A, Tracey A, Berriman M, Devaney E, Cotton JA, Sargison ND. A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biol Evol. 2018;10:396–409. doi: 10.1093/gbe/evx269. PubMed DOI PMC

Matoušková P, Lecová L, Laing R, Dimunová D, Vogel H, Raisová Stuchlíková L, Nguyen LT, Kellerová P, Vokřál I, Lamka J, Szotáková B, Várady M, Skálová L. UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int J Parasitol Drugs Drug Resist. 2018;8:420–429. doi: 10.1016/j.ijpddr.2018.09.005. PubMed DOI PMC

Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic Biol Med. 2015;88:290–301. doi: 10.1016/j.freeradbiomed.2015.06.008. PubMed DOI PMC

Park SK, Tedesco PM, Johnson TE. Oxidative stress and longevity in Caenorhabditis elegans as mediated by SKN-1. Aging Cell. 2009;8:258–269. doi: 10.1111/j.1474-9726.2009.00473.x. PubMed DOI PMC

Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. doi: 10.1186/gb-2013-14-8-r88. PubMed DOI PMC

Rezansoff AM, Laing R, Martinelli A, Stasiuk S, Redman E, Bartley D, Holroyd N, Devaney E, Sargison ND, Doyle S, Cotton JA, Gilleard JS. The confounding effects of high genetic diversity on the determination and interpretation of differential gene expression analysis in the parasitic nematode Haemonchus contortus. Int J Parasitol. 2019;49:847–858. doi: 10.1016/j.ijpara.2019.05.012. PubMed DOI

Stuchlíková LR, Matoušková P, Vokřál I, Lamka J, Szotáková B, Sečkařová A, Dimunová D, Nguyen LT, Várady M, Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–58. doi: 10.1016/j.ijpddr.2018.01.005. PubMed DOI PMC

Multiple sequence alignment by Florence Corpet. http://multalin.toulouse.inra.fr/

Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...