UDP-glycosyltransferase family in Haemonchus contortus: Phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/M003949/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
30293057
PubMed Central
PMC6174829
DOI
10.1016/j.ijpddr.2018.09.005
PII: S2211-3207(18)30086-1
Knihovny.cz E-zdroje
- Klíčová slova
- Detoxification, Haemonchus contortus, Resistance, UDP-glycosyltransferase,
- MeSH
- anthelmintika farmakologie MeSH
- benzimidazoly farmakologie MeSH
- Caenorhabditis elegans enzymologie genetika MeSH
- exprese genu MeSH
- fylogeneze * MeSH
- glykosylace MeSH
- glykosyltransferasy chemie klasifikace genetika MeSH
- Haemonchus účinky léků enzymologie genetika MeSH
- léková rezistence genetika MeSH
- mapování chromozomů MeSH
- multigenová rodina MeSH
- nemoci ovcí parazitologie MeSH
- ovce MeSH
- sexuální faktory MeSH
- uridindifosfát genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- anthelmintika MeSH
- benzimidazole MeSH Prohlížeč
- benzimidazoly MeSH
- glykosyltransferasy MeSH
- uridindifosfát MeSH
UDP-glycosyltransferases (UGT), catalysing conjugation of UDP-activated sugar donors to small lipophilic chemicals, are widespread in living organisms from bacteria to fungi, plant, or animals. The progress of genome sequencing has enabled an assessment of the UGT multigene family in Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite of small ruminants. Here we report 32 putative UGT genes divided into 15 UGT families. Phylogenetic analysis in comparison with UGTs from Caenorhabditis elegans, a free-living model nematode, revealed several single member homologues, a lack of the dramatic gene expansion seen in C. elegans, but also several families (UGT365, UGT366, UGT368) expanded in H. contortus only. The assessment of constitutive UGT mRNA expression in H. contortus adults identified significant differences between females and males. In addition, we compared the expression of selected UGTs in the drug-sensitive ISE strain to two benzimidazole-resistant strains, IRE and WR, with different genetic backgrounds. Constitutive expression of UGT368B2 was significantly higher in both resistant strains than in the sensitive strain. As resistant strains were able to deactivate benzimidazole anthelmintics via glycosylation more effectively then the sensitive strain, UGT368B2 enhanced constitutive expression might contribute to drug resistance in H. contortus.
Zobrazit více v PubMed
Ahn S.-J., Vogel H., Heckel D.G. Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 2012;42:133–147. PubMed
Azzariti A., Porcelli L., Quatrale A.E., Silvestris N., Paradiso A. The coordinated role of CYP450 enzymes and P-gp in determining cancer resistance to chemotherapy. Curr. Drug Metabol. 2011;12:713–721. PubMed
Bellemare J., Rouleau M., Girard H., Harvey M., Guillemette C. Alternatively spliced products of the UGT1A gene interact with the enzymatically active proteins to inhibit glucuronosyltransferase activity in vitro. Drug Metab. Dispos. 2010;38:1785–1789. PubMed
Blackhall W.J., Prichard R.K., Beech R.N. P-glycoprotein selection in strains of Haemonchus contortus resistant to benzimidazoles. Vet. Parasitol. 2008;152:101–107. PubMed
Bock K.W. Vertebrate UDP-glucuronosyltransferases: functional and evolutionary aspects. Biochem. Pharmacol. 2003;66:691–696. PubMed
Bock K.W., Kohle C. Topological aspects of oligomeric UDP-glucuronosyltransferases in endoplasmic reticulum membranes: advances and open questions. Biochem. Pharmacol. 2009;77:1458–1465. PubMed
Bock K.W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem. Pharmacol. 2016;99:11–17. PubMed
Cardoso-Moreira M., Arguello J.R., Gottipati S., Harshman L.G., Grenier J.K., Clark A.G. Evidence for the fixation of gene duplications by positive selection in Drosophila. Genome Res. 2016;26:787–798. PubMed PMC
Denecke S., Fusetto R., Martelli F., Giang A., Battlay P., Fournier-Level A., O'Hair R.A., Batterham P. Multiple P450s and variation in neuronal genes underpins the response to the insecticide imidacloprid in a population of Drosophila melanogaster. Sci. Rep. 2017;7:11338. PubMed PMC
Doyle S.R., Laing R., Bartley D.J., Britton C., Chaudhry U., Gilleard J.S., Holroyd N., Mable B.K., Maitland K., Morrison A.A., Tait A., Tracey A., Berriman M., Devaney E., Cotton J.A., Sargison N.D. A genome resequencing-based genetic map reveals the recombination landscape of an outbred parasitic nematode in the presence of polyploidy and polyandry. Genome Biol Evol. 2018;10:396–409. PubMed PMC
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. PubMed
Finel M., Kurkela M. The UDP-glucuronosyltransferases as oligomeric enzymes. Curr. Drug Metabol. 2008;9:70–76. PubMed
Fontaine P., Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int J Parasitol Drugs Drug Resist. 2018;8:312–319. PubMed PMC
Ghanizadeh H., Harrington K.C. Non-target site mechanisms of resistance to herbicides. Crit. Rev. Plant Sci. 2017;36:24–34.
Gilleard J.S., Redman E. Vol. 93. 2016. pp. 31–68. (Genetic diversity and population structure of Haemonchus contortus. Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends). PubMed
Jacobs C.G., Steiger S., Heckel D.G., Wielsch N., Vilcinskas A., Vogel H. Sex, offspring and carcass determine antimicrobial peptide expression in the burying beetle. Sci. Rep. 2016;6:25409. PubMed PMC
Jones L.M., Flemming A.J., Urwin P.E. NHR-176 regulates cyp-35d1 to control hydroxylation-dependent metabolism of thiabendazole in Caenorhabditis elegans. Biochem. J. 2015;466:37–44. PubMed
Kotze A.C., Ruffell A.P., Ingham A.B. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae. Antimicrob. Agents Chemother. 2014;58:7475–7483. PubMed PMC
Kotze A.C., Prichard R.K. Vol. 93. 2016. pp. 397–428. (Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends). PubMed
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC
Kumar S., Vo A.D., Qin F.J., Li H. Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci. Rep. 2016;6:21597. PubMed PMC
Kwa M.S.G., Veenstra J.G., Roos M.H. Molecular characterization of beta-tubulin genes present in benzimidazole resistant populations of Haemonchus contortus. Mol. Biochem. Parasitol. 1993;60:133–144. PubMed
Laing R., Kikuchi T., Martinelli A., Tsai I.J., Beech R.N., Redman E., Holroyd N., Bartley D.J., Beasley H., Britton C., Curran D., Devaney E., Gilabert A., Hunt M., Jackson F., Johnston S.L., Kryukov I., Li K., Morrison A.A., Reid A.J., Sargison N., Saunders G.I., Wasmuth J.D., Wolstenholme A., Berriman M., Gilleard J.S., Cotton J.A. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14:R88. PubMed PMC
Laing S.T., Ivens A., Laing R., Ravikumar S., Butler V., Woods D.J., Gilleard J.S. Characterization of the xenobiotic response of Caenorhabditis elegans to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochem. J. 2010;432:505–514. PubMed
Le S.Q., Gascuel O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008;25:1307–1320. PubMed
Lecova L., Ruzickova M., Laing R., Vogel H., Szotakova B., Prchal L., Lamka J., Vokral I., Skalova L., Matouskova P. Reliable reference gene selection for quantitative real time PCR in Haemonchus contortus. Mol. Biochem. Parasitol. 2015;201:123–127. PubMed
Li X.X., Zhu B., Gao X.W., Liang P. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.) Pest Manag. Sci. 2017;73:1402–1409. PubMed
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–408. PubMed
Mackenzie P.I., Bock K.W., Burchell B., Guillemette C., Ikushiro S., Iyanagi T., Miners J.O., Owens I.S., Nebert D.W. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics Genom. 2005;15:677–685. PubMed
Malik V., Black G.W. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases. Structural and Mechanistic Enzymology: Bringing Together Experiments and Computing. 2012;87:87–115. PubMed
Matouskova P., Vokral I., Lamka J., Skalova L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. PubMed
Mederos A.E., Ramos Z., Banchero G.E. First report of monepantel Haemonchus contortus resistance on sheep farms in Uruguay. Parasites Vectors. 2014;7:598. PubMed PMC
Meech R., Rogers A., Zhuang L., Lewis B.C., Miners J.O., Mackenzie P.I. Identification of residues that confer sugar selectivity to UDP-glycosyltransferase 3A (UGT3A) enzymes. J. Biol. Chem. 2012;287:24122–24130. PubMed PMC
Miley M.J., Zielinska A.K., Keenan J.E., Bratton S.M., Radominska-Pandya A., Redinbo M.R. Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J. Mol. Biol. 2007;369:498–511. PubMed PMC
Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods. 2011;8:785–786. PubMed
Rochat B. Role of cytochrome P450 activity in the fate of anticancer agents and in drug resistance - focus on tamoxifen, paclitaxel and imatinib metabolism. Clin. Pharmacokinet. 2005;44:349–366. PubMed
Roos M.H., Otsen M., Hoekstra R., Veenstra J.G., Lenstra J.A. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2004;34:109–115. PubMed
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W.Z., Lopez R., McWilliam H., Remmert M., Soding J., Thompson J.D., Higgins D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC
Stuchlíková L.R., Matoušková P., Vokřál I., Lamka J., Szotáková B., Sečkařová A., Dimunová D., Nguyen L.T., Várady M., Skálová L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int J Parasitol Drugs Drug Resist. 2018;8:50–58. PubMed PMC
Tiwari P., Sangwan R.S., Sangwan N.S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol. Adv. 2016;34:714–739. PubMed
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. PubMed PMC
Vanwyk J.A., Gerber H.M., Groeneveld H.T. A technique for the recovery of nematodes from ruminants by migration from gastrointestinal ingesta gelled in agar-large scale application Onderstepoort. J Vet Res. 1980;47:147–158. PubMed
Vogel H., Badapanda C., Knorr E., Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol. Biol. 2014;23:98–112. PubMed
Vokral I., Bartikova H., Prchal L., Stuchlikova L., Skalova L., Szotakova B., Lamka J., Varady M., Kubicek V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. PubMed
Vokral I., Jirasko R., Stuchlikova L., Bartikova H., Szotakova B., Lamka J., Varady M., Skalova L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet. Parasitol. 2013;196:373–381. PubMed
Williamson S.M., Storey B., Howell S., Harper K.M., Kaplan R.M., Wolstenholme A.J. Candidate anthelmintic resistance-associated gene expression and sequence polymorphisms in a triple-resistant field isolate of Haemonchus contortus. Mol. Biochem. Parasitol. 2011;180:99–105. PubMed
Yilmaz E., Ramunke S., Demeler J., Krucken J. Comparison of constitutive and thiabendazole-induced expression of five cytochrome P450 genes in fourth-stage larvae of Haemonchus contortus isolates with different drug susceptibility identifies one gene with high constitutive expression in a multi-resistant isolate. Int J Parasitol Drugs Drug Resist. 2017;7:362–369. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Biotransformation of anthelmintics in nematodes in relation to drug resistance
UDP-Glycosyltransferases and Albendazole Metabolism in the Juvenile Stages of Haemonchus contortus