New Unnatural Gallotannins: A Way toward Green Antioxidants, Antimicrobials and Antibiofilm Agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34439536
PubMed Central
PMC8389200
DOI
10.3390/antiox10081288
PII: antiox10081288
Knihovny.cz E-zdroje
- Klíčová slova
- S. aureus, antibiofilm activity, antimicrobial effect, antioxidant potential, unnatural gallotannins,
- Publikační typ
- časopisecké články MeSH
Nature has been a source of inspiration for the development of new pharmaceutically active agents. A series of new unnatural gallotannins (GTs), derived from d-lyxose, d-ribose, l-rhamnose, d-mannose, and d-fructose have been designed and synthesized in order to study the protective and antimicrobial effects of synthetic polyphenols that are structurally related to plant-derived products. The structures of the new compounds were confirmed by various spectroscopic methods. Apart from spectral analysis, the antioxidant activity was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging and iron reducing power (FRAP) assays. Antibacterial activity of compounds was tested in vitro against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 (reference and control strains), three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. For screening of antimycobacterial effect, a virulent isolate of Mycobacterium tuberculosis and two non-tuberculous mycobacteria were used. Furthermore, antibiofilm activity of structurally different GTs against S. aureus, and their ability to inhibit sortase A, were inspected. Experimental data revealed that the studied GTs are excellent antioxidants and radical-scavenging agents. The compounds exhibited only a moderate antibacterial effect against Gram-positive pathogens S. aureus and E. faecalis and were practically inactive against mycobacteria. However, they were efficient inhibitors and disruptors of S. aureus biofilms in sub-MIC concentrations, and interacted with the quorum-sensing system in Chromobacteriumviolaceum. Overall, these findings suggest that synthetic GTs could be considered as promising candidates for pharmacological, biomedical, consumer products, and for food industry applications.
Zobrazit více v PubMed
Khanbabaee K., van Ree T. Tannins: Classification and definition. Nat. Prod. Rep. 2001;18:641–649. doi: 10.1039/b101061l. PubMed DOI
Quideau S., Deffieux D., Douat-Casassus C., Pouysegu L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 2011;50:586–621. doi: 10.1002/anie.201000044. PubMed DOI
Barbehenn R.V., Constabel C.P. Tannins in plant–herbivore interactions. Phytochemistry. 2011;72:1551–1565. doi: 10.1016/j.phytochem.2011.01.040. PubMed DOI
Chung K.T., Wong T.Y., Wei C.I., Huang Y.W., Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998;38:421–464. doi: 10.1080/10408699891274273. PubMed DOI
Kiss A.K., Piwowarski J.P. Ellagitannins, gallotannins and their metabolites—The contribution to the anti-inflammatory effect of food products and medicinal plants. Curr. Med. Chem. 2018;25:4946–4967. doi: 10.2174/0929867323666160919111559. PubMed DOI
Lee S.J., Lee H.K., Jung M.K., Mar W. In vitro antiviral activity of 1,2,3,4,6-penta-O-galloyl-β-d-glucose against hepatitis B virus. Biol. Pharm. Bull. 2006;29:2131–2134. doi: 10.1248/bpb.29.2131. PubMed DOI
Zhang J., Li L., Kim S.H., Hagerman A.E., Lü J. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta galloyl-glucose. Pharmaceut. Res. 2009;26:2066–2080. doi: 10.1007/s11095-009-9932-0. PubMed DOI PMC
Yin S., Dong Y., Li J., Lü J., Hu H. Penta-1,2,3,4,6-O-galloyl-β-d-glucose induces senescence-like terminal S-phase arrest in human hepatoma and breast cancer cells. Mol. Carcinog. 2011;50:592–600. doi: 10.1002/mc.20743. PubMed DOI
Jourdes M., Pouysegu L., Deffieux D., Teissedre P.-L., Quideau S. Hydrolyzable tannins: Gallotannins and ellagitannins. In: Ramawat K.G., Merillon J.M., editors. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes. Springer; Berlin, Germany: 2013. pp. 1975–2010.
Wu Y.P., Liu X.Y., Bai J.R., Xie H.C., Ye S.L., Zhong K., Huang Y.N., Gao H. Inhibitory effect of a natural phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of Staphylococcus aureus through targeting sortase A. RSC Adv. 2019;9:32453–32461. doi: 10.1039/C9RA05883D. PubMed DOI PMC
Blando F., Russo R., Negro C., De Bellis L., Frassinetti S. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntiaficus indica (L.) Mill. cladode polyphenolic extracts. Antioxidants. 2019;8:117. doi: 10.3390/antiox8050117. PubMed DOI PMC
Gotz F. Staphylococcus and biofilms. Molec. Microbiol. 2002;43:1367–1378. doi: 10.1046/j.1365-2958.2002.02827.x. PubMed DOI
Zheng Y., He L., Asiamah T.K., Otto M. Colonization of medical devices by staphylococci. Environm. Microbiol. 2018;20:3141–3153. doi: 10.1111/1462-2920.14129. PubMed DOI PMC
Takó M., Kerekes E.B., Zambrano C., Kotogán A., Papp T., Krisch J., Vágvölgyi C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food contaminating microorganisms. Antioxidants. 2020;9:165. doi: 10.3390/antiox9020165. PubMed DOI PMC
Amakura Y., Yoshimura M., Sugimoto N., Yamazaki T., Yoshida T. Marker constituents of the natural antioxidant eucalyptus leaf extract for the evaluation of food additives. Biosci. Biotechnol. Biochem. 2009;73:1060–1065. doi: 10.1271/bbb.80832. PubMed DOI
Abou-Zaid M.M., Nozzolillo C. 1-O-galloyl-α-l-rhamnose from Acer rubrum. Phytochemistry. 1999;52:1629–1631. doi: 10.1016/S0031-9422(99)00236-8. DOI
Xie Y., Zhao Y. Synthesis of 7-O-galloyl-d-sedoheptulose. Carbohydr. Res. 2007;342:1510–1513. doi: 10.1016/j.carres.2007.04.015. PubMed DOI
Ren Y., Himmeldirk K., Chen X. Synthesis and structure-activity relationship study of antidiabetic penta-O-galloyl-d-glucopyranose and its analogues. J. Med. Chem. 2006;49:2829–2837. doi: 10.1021/jm060087k. PubMed DOI
Cao Y., Himmeldirk K., Qian Y., Ren Y., Malki A., Chen X. Biological and biomedical functions of penta-O-galloyl-d-glucose and its derivatives. J. Nat. Med. 2014;68:465–472. doi: 10.1007/s11418-014-0823-2. PubMed DOI
González-Sarrías A., Yuan T., Seeram N.P. Cytotoxicity and structure activity relationship studies of maplexins A–I, gallotannins from red maple (Acer rubrum) Food Chem. Toxicol. 2012;50:1369–1376. doi: 10.1016/j.fct.2012.02.031. PubMed DOI
Torres-León C., Ventura-Sobrevilla J., Serna-Cock L., Ascacio-Valdés J.A., Contreras-Esquivel J., Aguilar C.N. Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. J. Funct. Foods. 2017;37:176–189. doi: 10.1016/j.jff.2017.07.045. DOI
Jiamboonsri P., Pithayanukul P., Bavovada R., Chomnawang M.T. The inhibitory potential of Thai mango seed kernel extract against methicillin-resistant Staphylococcus aureus. Molecules. 2011;16:6255–6270. doi: 10.3390/molecules16086255. PubMed DOI PMC
Lin M.H., Chang F.R., Hua M.Y., Wu Y.C., Liu S.T. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob. Agents Chemother. 2011;55:1021–1027. doi: 10.1128/AAC.00843-10. PubMed DOI PMC
Zhao Y., Wang B., Zhang S., Yang S., Wang H., Ren A., Yi E. Isolation of antifungal compound from Paeonia suffruticosa and its antifungal mechanism. Chin. J. Integrat. Med. 2014;21:211–216. doi: 10.1007/s11655-014-1805-7. PubMed DOI
Shafizadeh F. Branched-chain sugars of natural occurrence. Adv. Carbohydr. Chem. 1956;48:263–283. PubMed
Grisebach H., Schmid R. Chemistry and biochemistry of branched-chain sugars. Angew. Chem. Internat. Edit. 1972;1:159–248. doi: 10.1002/anie.197201591. PubMed DOI
Beck E., Hopf H. Branched-chain sugars and sugar alcohols. Carbohydrates. 1990:235–289. doi: 10.1016/b978-0-12-461012-5.50013-6. DOI
Masaki H., Atsumi T., Sakurai H. Hamamelitannin as a new potent active oxygen scavenger. Phytochemistry. 1994;37:337–343. doi: 10.1016/0031-9422(94)85057-7. DOI
Masaki H., Atsumi T., Sakurai H. Peroxyl radical scavenging activities of hamamelitannin in chemical and biological systems. Free. Rad. Res. 1995;22:419–430. doi: 10.3109/10715769509147550. PubMed DOI
Lizárraga D., Touriño S., Reyes-Zurita F.J., de Kok T.M., van Delft J.H., Maas L.M., Briedé J.J., Centelles J.J., Torres J.L., Cascante M. Witch hazel (Hamamelis virginiana) fractions and the importance of gallate moieties-electron transfer capacities in their antitumoral properties. J. Agric. Food Chem. 2008;56:11675–11682. doi: 10.1021/jf802345x. PubMed DOI
Erdelmeier C., Cinatl J., Rabenau H., Doerr H., Biber A., Koch E. Antiviral and antiphlogistic activities of Hamamelis virginiana Bark. Planta Med. 1996;62:241–245. doi: 10.1055/s-2006-957868. PubMed DOI
Sánchez-Tena S., Fernández-Cachón M.F., Carreras A.A., Mateos-Martín M.L., Costoya N., Moyer M.P., Nuñez M.J., Torres J.L., Cascante M. Hamamelitannin from Witch hazel (Hamamelis virginiana) displays specific cytotoxic activity against colon cancer cells. J. Nat. Prod. 2012;75:26–33. doi: 10.1021/np200426k. PubMed DOI
Vermote A., Brackman G., Risseeuw M.D.P., Cappoen D., Cos P., Coenye T., Van Calenbergh S. Novel potentiators for vancomycin in the treatment of biofilm-related MRSA infections via a mix and match approach. ACS Med. Chem. Lett. 2016;8:38–42. doi: 10.1021/acsmedchemlett.6b00315. PubMed DOI PMC
Brackman G., Breyne K., De Rycke R., Vermote A., Van Nieuwerburgh F., Meyer E., Van Calenbergh S., Coenye T. The quorum sensing inhibitor hamamelitannin increases antibiotic susceptibility of Staphylococcus aureus bioflms by affecting peptidoglycan biosynthesis and eDNA release. Sci. Rep. 2016;6:20321. doi: 10.1038/srep20321. PubMed DOI PMC
Hricovíniová J., Ševčovičová A., Hricovíniová Z. Evaluation of the genotoxic, DNA-protective and antioxidant profile of synthetic alkyl gallates and gallotannins using in vitro assays. Toxicol. Vitro. 2020;65:104789. doi: 10.1016/j.tiv.2020.104789. PubMed DOI
Barbat J., Gelas J., Horton D. Reactions of D-lyxose and D-xylose with 2-methoxypropene under kinetic conditions. Carbohydr. Res. 1991;219:115–121. doi: 10.1016/0008-6215(91)89046-I. DOI
Clinton R.O., Geissman T.A. Gallaldehyde tribenzyl ether. J. Am. Chem. Soc. 1943;65:85–87. doi: 10.1021/ja01241a028. DOI
Ho P.-T. Branched-chain sugars. Reaction of furanoses with formaldehyde: A stereospecific synthesis of l-dendroketose. Can. J. Chem. 1979;57:384–386. doi: 10.1139/v79-064. DOI
Hricovíniová Z. Isomerization as a route to rare ketoses. The beneficial effect of microwave irradiation on Mo(VI)-catalyzed stereospecific rearrangement. Tetrahedron Asymmetry. 2008;19:204–208. doi: 10.1016/j.tetasy.2007.11.025. DOI
Ho P.-T. Branched-chain sugars. Reaction of furanoses with formaldehyde: A simple synthesis of d- and l-apiose. Can. J. Chem. 1979;57:381–383. doi: 10.1139/v79-063. DOI
Locatelli M., Gindro R., Travaglia F., Coïsson J.D., Rinaldi M., Arlorio M. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data. Food Chem. 2009;114:889–897. doi: 10.1016/j.foodchem.2008.10.035. DOI
Gupta D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015;6:546–566. doi: 10.13040/IJPSR.0975-8232.6(2). DOI
Oravcová V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Čížek A., Literák I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
CLSI . Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing. CLSI; Wayne, PA, USA: 2012. p. M100-S22. The 8th Informational Supplement Document.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007. DOI
Pospíšilová Š., Malík I., Bezoušková K., Kauerová T., Kollár P., Csöllei J., Oravec M., Čížek A., Jampílek J. Dibasic derivatives of phenylcarbamic acid as prospective antibacterial agents interacting with cytoplasmic membrane. Antibiotics. 2020;9:64. doi: 10.3390/antibiotics9020064. PubMed DOI PMC
Pospíšilová Š., Malík I., Čurillová J., Michnová H., Černá L., Padrtová T., Hošek J., Pecher D., Čížek A., Jampílek J. Insight into antimicrobial activity of substituted phenylcarbamoyloxypiperazinyl propanols. Bioorg. Chem. 2020;102:104060. doi: 10.1016/j.bioorg.2020.104060. PubMed DOI
O’Toole G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011;47:2437. doi: 10.3791/2437. PubMed DOI PMC
Merghni A., Marzouki H., Hentati H., Aouni M., Mastouri M. Antibacterial and antibiofilm activities of Laurus nobilis, L. essential oil against Staphylococcus aureus strains associated with oral infections. Curr. Res. Translat. Med. 2016;64:29–34. doi: 10.1016/j.patbio.2015.10.003. PubMed DOI
Szabó M.Á., Varga G.Z., Hohmann J., Schelz Z., Szegedi E., Amaral L., Molnár J. Inhibition of quorum-sensing signals by essential oils. Phytother. Res. 2010;24:782–786. doi: 10.1002/ptr.3010. PubMed DOI
Fraga-Corral M., García-Oliveira P., Pereira A.G., Lourenço-Lopes C., Jimenez-Lopez C., Prieto M.A., Simal-Gandara J. Technological application of tannin-based extracts. Molecules. 2020;25:614. doi: 10.3390/molecules25030614. PubMed DOI PMC
Siquet C., Paiva-Martins F., Lima J.L.F.C., Reis S., Borges F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids—A structure-activity relationship study. Free Rad. Res. 2006;40:433–442. doi: 10.1080/10715760500540442. PubMed DOI
Jing P., Zhao S.J., Jian W.J., Qian B.J., Dong Y., Pang J. Quantitative studies on structure-DPPH·scavenging activity relationships of food phenolic acids. Molecules. 2012;17:12910–12924. doi: 10.3390/molecules171112910. PubMed DOI PMC
Chan E.W.L., Gray A.I., Igoli J.O., Lee S.M., Goh J.K. Galloylated flavonol rhamnosides from the leaves of Calliandra tergemina with antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) Phytochemistry. 2014;107:148–154. doi: 10.1016/j.phytochem.2014.07.028. PubMed DOI
Bag A., Bhattacharyya S.K., Chattopadhyay R.R. Isolation and identification of a gallotannin 1,2,6-tri-O-galloyl- β-d-glucopyranose from hydroalcoholic extract of Terminalia chebula fruits effective against multidrug-resistant uropathogens. J. Appl. Microbiol. 2013;115:390–397. doi: 10.1111/jam.12256. PubMed DOI
Aguilar-Galvez A., Noratto G., Chambi F., Debaste F., Campos D. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds. Food Chem. 2014;156:301–304. doi: 10.1016/j.foodchem.2014.01.110. PubMed DOI
Maisetta G., Batoni G., Caboni P., Esin S., Rinaldi A.C., Zucca P. Tannin profile, antioxidant properties, and antimicrobial activity of extracts from two Mediterranean species of parasitic plant Cytinus. BMC Complement. Alternat. Med. 2019;19:1–11. doi: 10.1186/s12906-019-2487-7. PubMed DOI PMC
Bag A., Chattopadhyay R.R. Synergistic antibiofilm efficacy of a gallotannin 1,2,6-tri-O-galloyl-β-d-glucopyranose from Terminalia chebula fruit in combination with gentamicin and trimethoprim against multidrug resistant uropathogenic Escherichia coli biofilms. PLoS ONE. 2017;12:e0178712. doi: 10.1371/journal.pone.0178712. PubMed DOI PMC
Ta C., Arnason J. Mini review of phytochemicals and plant taxa with activity as microbial biofilm and quorum sensing inhibitors. Molecules. 2016;21:29. doi: 10.3390/molecules21010029. PubMed DOI PMC
Narla A.V., Borenstein D.B., Wingreen N.S. A biophysical limit for quorum sensing in biofilms. Proc. Natl. Acad. Sci. USA. 2021;118:e2022818118. doi: 10.1073/pnas.2022818118. PubMed DOI PMC
Wang G., Gao Y., Wang H., Niu X., Wang J. Baicalin weakens Staphylococcus aureus pathogenicity by targeting sortase B. Front. Cell. Infect. Microbiol. 2018;8:418. doi: 10.3389/fcimb.2018.00418. PubMed DOI PMC
Oh I., Yang W.-Y., Chung S.-C., Kim T.-Y., Oh K.-B., Shin J. In vitro sortase A inhibitory and antimicrobial activity of flavonoids isolated from the roots of Sophora flavescens. Arch. Pharm. Res. 2011;34:217–222. doi: 10.1007/s12272-011-0206-0. PubMed DOI
Mu D., Xiang H., Dong H., Wang D., Wang T. Isovitexin, a potential candidate inhibitor of sortase A of Staphylococcus aureus USA 300. J. Microbiol. Biotechnol. 2018;28:1426–1432. doi: 10.4014/jmb.1802.02014. PubMed DOI
Wang J., Shi Y., Jing S., Dong H., Wang D., Wang T. Astilbin inhibits the activity of sortase A from Streptococcus mutans. Molecules. 2019;24:465. doi: 10.3390/molecules24030465. PubMed DOI PMC
Dong J., Zhang L., Xu N., Zhou S., Song Y., Yang Q., Liu Y., Yang Y., Ai X. Rutin reduces the pathogenicity of Streptococcus agalactiae to tilapia by inhibiting the activity of sortase A. Aquaculture. 2021;530:735743. doi: 10.1016/j.aquaculture.2020.735743. DOI