Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38601653
PubMed Central
PMC11004567
DOI
10.1016/j.heliyon.2024.e29051
PII: S2405-8440(24)05082-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antibacterial activity, Antibiofilm effect, Cu(II) complexes, Cytotoxicity, Quinazolinones, Schiff bases,
- Publikační typ
- časopisecké články MeSH
A series of nine 2,3-disubstituted-quinazolin-4(3H)-one derived Schiff bases and their three Cu(II) complexes was prepared and tested for their antimicrobial activities against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the substances were tested in vitro against Mycobacterium tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 and M. smegmatis ATCC 700084. While anti-enterococcal and antimycobacterial activities were insignificant, 3-[(E)-(2-hydroxy-5-nitrobenzylidene)amino]-2-(2-hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (SB3) and its Cu(II) complex (SB3-Cu) demonstrated bacteriostatic antistaphylococcal activity. In addition, both compounds, as well as the other two prepared complexes, showed antibiofilm activity, which resulted in a reduction of biofilm formation and eradication of mature S. aureus biofilm by 80% even at concentrations lower than the values of their minimum inhibitory concentrations. In addition, the compounds were tested for their cytotoxic effect on the human monocytic leukemia cell line THP-1. The antileukemic efficiency was improved by the preparation of Cu(II) complexes from the corresponding non-chelated Schiff base ligands.
Zobrazit více v PubMed
Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI
Cavalli A., Lizzi F., Bongarzone S., Brun R., Luise Krauth-Siegel R., Bolognesi M.L. Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase. Bioorg Med Chem Lett. 2009;19:3031–3035. doi: 10.1016/j.bmcl.2009.04.060. PubMed DOI
Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., Ratuszna A., Rzeszowska-Wolny J., Richardson D.R., Polanski J. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI
Jafari E., Khajouei M.R., Hassanzadeh F., Hakimelahi G.H., Khodarahmi G.A. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11:1–14. PubMed PMC
Alsibaee A.M., Al-Yousef H.M., Al-Salem H.S. Quinazolinones, the winning horse in drug discovery. Molecules. 2023;28:978. doi: 10.3390/molecules28030978. PubMed DOI PMC
Shang X.F., Morris-Natschke S.L., Liu Y.Q., Guo X., Xu X.S., Goto M., Li J.C., Yang G.Z., Lee K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018;38:775–828. doi: 10.1002/med.21466. PubMed DOI PMC
Shang X.F., Morris-Natschke S.L., Yang G.Z., Liu Y.Q., Guo X., Xu X.S., Goto M., Li J.C., Zhang J.Y., Lee K.H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev. 2018;38:1614–1660. doi: 10.1002/med.21492. PubMed DOI PMC
Asif M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem. 2014;2014 doi: 10.1155/2014/395637. PubMed DOI PMC
Khan I., Ibrar A., Ahmed W., Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur. J. Med. Chem. 2015;90:124–169. doi: 10.1016/j.ejmech.2014.10.084. PubMed DOI
da Silva C.M., da Silva D.L., Modolo L.V., Alves R.B., de Resende M.A., Martins C.V.B., de Fátima A. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011;2:1–8. doi: 10.1016/j.jare.2010.05.004. DOI
Kajal A., Bala S., Kamboj S., Sharma N., Saini V. Schiff bases: a versatile pharmacophore. J Catalysts. 2013;2013 doi: 10.1155/2013/893512. DOI
Abu-Dief A.M., Mohamed I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni Suef Univ J Basic Appl Sci. 2015;14:119–133. doi: 10.1016/j.bjbas.2015.05.004. PubMed DOI PMC
Abu-Yamin A.A., Abduh M.S., Saghir S.A.M., Al-Gabri N. Synthesis, characterization and biological activities of new Schiff base compound and its lanthanide complexes. Pharmaceuticals. 2022;15:454. doi: 10.3390/ph15040454. PubMed DOI PMC
Roche V.F., Zito S.W., Lemke T., Williams D.A. eighth ed. Wolters Kluwer; Baltimore, MD, USA: 2019. Foye's Principles of Medicinal Chemistry.
Vinsova J., Cermakova K., Tomeckova A., Ceckova M., Jampilek J., Cermak P., Kunes J., Dolezal M., Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 2006;14:5850–5865. doi: 10.1016/j.bmc.2006.05.030. PubMed DOI
Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., Trejtnar F. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI
Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI
Kos J., Ku C.F., Kapustikova I., Oravec M., Zhang H.J., Jampilek J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. ChemistrySelect. 2019;4:4582–4587. doi: 10.1002/slct.201900873. DOI
Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Cizek A., Jampilek J., Zięba A. Towards anticancer and antibacterial agents: design and synthesis of 1,2,3-triazol-quinobenzothiazine derivatives. Int. J. Mol. Sci. 2023;24 doi: 10.3390/ijms241713250. PubMed DOI PMC
Aremu O.S., Gopaul K., Kadam P., Singh M., Mocktar C., Singh P., Koorbanally N.A. Synthesis, characterization, anticancer and antibacterial activity of some novel pyrano[2,3-d]pyrimidinone carbonitrile derivatives. Anti Cancer Agents Med. Chem. 2017;17:719–725. doi: 10.2174/1871520616666160813213245. PubMed DOI
Felicio M.R., Silva O.N., Gonçalves S., Santos N.C., Franco O.L. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 2017;5:5. doi: 10.3389/fchem.2017.00005. PubMed DOI PMC
Diaconu D., Antoci V., Mangalagiu V., Amariucai-Mantu D., Mangalagiu I.I. Quinoline-imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022;12 doi: 10.1038/s41598-022-21435-6. PubMed DOI PMC
Ugalde-Arbizu M., Aguilera-Correa J.J., Garcia-Almodovar V., Ovejero-Paredes K., Diaz-Garcia D., Esteban J., Paez P.L., Prashar S., San Sebastian E., Filice M., Gomez-Ruiz S. Dual anticancer and antibacterial properties of silica-based theranostic nanomaterials functionalized with coumarin343, folic acid and a cytotoxic organotin(IV) metallodrug. Pharmaceutics. 2023;15:560. doi: 10.3390/pharmaceutics15020560. PubMed DOI PMC
Campos L.E., Garibotto F., Angelina E., Kos J., Gonec T., Marvanova P., Vettorazzi M., Oravec M., Jendrzejewska I., Jampilek J., Alvarez S.E., Enriz R.D. Hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols, two new series of BRAF inhibitors. A theoretical and experimental study. Bioorg. Chem. 2020;103 doi: 10.1016/j.bioorg.2020.104145. PubMed DOI
Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Sochanik A., Cizek A., Jampilek J., Zięba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms232315078. PubMed DOI PMC
Pindjakova D., Pilarova E., Pauk K., Michnova H., Hosek J., Magar P., Cizek A., Imramovsky A., Jampilek J. Study of biological activities and ADMET-related properties of salicylanilide-based peptidomimetics. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms231911648. PubMed DOI PMC
Bouley R., Ding D., Peng Z., Bastian M., Lastochkin E., Song W., Suckow M.A., Schroeder V.A., Wolter W.R., Mobashery S., Chang M. Structure-activity relationship for the 4(3H)-quinazolinone antibacterials. J. Med. Chem. 2016;59:5011–5021. doi: 10.1021/acs.jmedchem.6b00372. PubMed DOI PMC
Gatadi S., Lakshmi T.V., Nanduri S. 4(3H)-Quinazolinone derivatives: promising antibacterial drug leads. Eur. J. Med. Chem. 2019;170:157–172. doi: 10.1016/j.ejmech.2019.03.018. PubMed DOI
Qian Y., Allegretta G., Janardhanan J., Peng Z., Mahasenan K.V., Lastochkin E., Gozun M.M.N., Tejera S., Schroeder V.A., Wolter W.R., Feltzer R., Mobashery S., Chang M. Exploration of the structural space in 4(3H)-quinazolinone antibacterials. J. Med. Chem. 2020;63:5287–5296. doi: 10.1021/acs.jmedchem.0c00153. PubMed DOI PMC
Ceballos S., Kim C., Qian Y., Mobashery S., Chang M., Torres C. Susceptibility of methicillin-resistant Staphylococcus aureus to five quinazolinone antibacterials. Antimicrob. Agents Chemother. 2019;64 doi: 10.1128/AAC.01344-19. 19. PubMed DOI PMC
Masri A., Anwar A., Khan N.A., Shahbaz M.S., Khan K.M., Shahabuddin S., Siddiqui R. Antibacterial effects of quinazolin-4(3H)-one functionalized-conjugated silver nanoparticles. Antibiotics. 2019;8:179. doi: 10.3390/antibiotics8040179. PubMed DOI PMC
Hricoviniova Z., Hricovini M., Kozics K. New series of quinazolinone derived Schiff's bases: synthesis, spectroscopic properties and evaluation of their antioxidant and cytotoxic activity. Chem. Pap. 2018;72:1041–1053. doi: 10.1007/s11696-017-0345-y. DOI
Hricoviniova J., Hricoviniova Z., Kozics K. Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-Substituted quinazolinones: structure-activity relationship study. Int. J. Mol. Sci. 2021;22:610. doi: 10.3390/ijms22020610. PubMed DOI PMC
Nielsen I.B., Petersen M.Å., Lammich L., Nielsen M.B., Andersen L.H. Absorption studies of neutral retinal Schiff base chromophores. J. Phys. Chem. A. 2006;110:12592–12596. doi: 10.1021/jp064901r. PubMed DOI
Gurgul I., Hricoviniova J., Mazuryk O., Hricoviniova Z., Brindell M. Enhancement of the cytotoxicity of quinazolinone Schiff base derivatives with copper coordination. Inorganics. 2023;11:391. doi: 10.3390/inorganics11100391. DOI
Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015 doi: 10.1155/2015/349534. PubMed DOI PMC
Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A., Literak I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI
WHO - 2021 Antibacterial agents in clinical and preclinical development: an overview and analysis. https://www.who.int/publications/i/item/9789240047655
Hricovini M., Hricovini M. Photochemically-induced anti-syn isomerization of quinazolinone-derived Schiff's bases: EPR, NMR and DFT analysis. Tetrahedron. 2017;73:252–261. doi: 10.1016/j.tet.2016.12.011. DOI
Hricovini M., Asher J., Hricovini M. Photochemical anti–syn isomerization around the –N–N= bond in heterocyclic imines. RSC Adv. 2020;10:5540–5550. doi: 10.1039/C9RA10730D. PubMed DOI PMC
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., Csollei J., Richardson D.R., Jampilek J. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg Med Chem Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., Jampilek J. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI
Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O'Mahony J., Liptaj T., Kralova K., Jampilek J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI
Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg Med Chem Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., Cizek A., Jampilek J. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Pospisilova S., Michnova H., Kauerova T., Pauk K., Kollar P., Vinsova J., Imramovsky A., Cizek A., Jampilek J. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg Med Chem Lett. 2018;28:2184–2188. doi: 10.1016/j.bmcl.2018.05.011. PubMed DOI
Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC
Gonec T., Pindjakova D., Vrablova L., Strharsky T., Michnova H., Kauerova T., Kollar P., Oravec M., Jendrzejewska I., Cizek A., Jampilek J. Antistaphylococcal activities and ADME-Related properties of chlorinated arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals. 2022;15:715. doi: 10.3390/ph15060715. PubMed DOI PMC
Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., Oravec M., Cizek A., Jampilek J. Study of biological activities and ADMET-Related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC
Strharsky T., Pindjakova D., Kos J., Vrablova L., Smak P., Michnova H., Gonec T., Hosek J., Oravec M., Jendrzejewska I., Cizek A., Jampilek J. Trifluoromethylcinnamanilide Michael acceptors for treatment of resistant bacterial infections. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms232315090. PubMed DOI PMC
Beyene B.B., Mihirteu A.M., Ayana M.T., Yibeltal A.W. Synthesis, characterization and antibacterial activity of metalloporphyrins: role of central metal ion. Results Chem. 2020;2 doi: 10.1016/j.rechem.2020.100073. DOI
Zhang J., Cheng P., Ma Y., Liu J., Miao Z., Ren D., Liu L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett. 2016;57:5271–5277. doi: 10.1016/j.tetlet.2016.10.047. DOI
Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI
Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC
Zahedifard M., Faraj F.L., Paydar M., Yeng Looi C., Hajrezaei M., Hasanpourghadi M., Kamalidehghan B., N, Abdul Majid, Mohd Ali H., Ameen Abdulla M. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways. Sci. Rep. 2015;5 doi: 10.1038/srep11544. PubMed DOI PMC
Measuring Cell Viability/Cytotoxicity, Dojindo EU GmbH, Munich, Germany. https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf. (Accessed 6 June 2023).
Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria–A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI
Clinical and Laboratory Standards Institute . CLSI; Wayne, PA, USA: 2023. Performance Standards For Antimicrobial Susceptibility Testing; the 33rd Informational Supplement Document.
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Boston; MA, USA: 2014. Enterococci: from Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary.https://www.ncbi.nlm.nih.gov/books/NBK190432 PubMed
Ramos S., Silva V., Dapkevicius M.L.E., Igrejas G., Enterococci P. Poeta. From harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC
Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11 doi: 10.1128/mBio.02962-20. 20. PubMed DOI PMC
Loghmani S.B., Zitzow E., Koh G.C.C., Ulmer A., Veith N., Großeholz R., Rossnagel M., Loesch M., Aebersold R., Kreikemeyer B., Fiedler T., Kummer U. All driven by energy demand? Integrative comparison of metabolism of Enterococcus faecalis wildtype and a glutamine synthase mutant. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.02400-21. PubMed DOI PMC
Hricoviniova Z. Surfactants of biological origin: the role of Mo(VI) and microwaves in the synthesis of xylan-based non-ionic surfactants. Carbohydr. Polym. 2016;144:297–304. doi: 10.1016/j.carbpol.2016.02.070. PubMed DOI
Fulop F., Simeonov M., Pihlaja K. Formation of 1,2-dihydroquinazolin-4(3H)-ones. Reinvestigation of a recently reported 1,3,-4-benzotriazepine synthesis. Tetrahedron. 1992;48:531–538. doi: 10.1016/S0040-4020(01)89014-1. DOI
Gudasi K.B., Patil S.A., Vadavi R.S., Shenoy R.V., Nethaji M. Crystal structure of 2-[2-hydroxy-3-methoxyphenyl]-3-[2-hydroxy-3-methoxybenzylamino]-1,2-dihydroquinazolin-4(3H)-one and the synthesis, spectral and thermal investigation of its transition metal complexes. Trans Metal Chem. 2006;31:586–592. doi: 10.1007/s11243-006-0034-0. DOI
Srivastava K.P., Putul O.P., Kumar N. Facile eco-friendly synthesis, characterisation and evaluation of antimicrobial activity of Cu(II) complexes of tridentate ligands. Der Pharma Chem. 2016;8:105–116. http://derpharmachemica.com/archive.html
Hricoviniova Z., Mascaretti S., Hricoviniova J., Cizek A., Jampilek J. New unnatural gallotannins: a way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants. 2021;10:1288. doi: 10.3390/antiox10081288. PubMed DOI PMC
Schwalbe R., Steele-Moore L., Goodwin A.C. CRC Press; Boca Raton, FL, USA: 2007. Antimicrobial Susceptibility Testing Protocols.
Masarovicova E., Kralova K. Handbook of Photosynthesis. second ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. Approaches to measuring plant photosynthesis activity; pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.