Critical view on antimicrobial, antibiofilm and cytotoxic activities of quinazolin-4(3H)-one derived schiff bases and their Cu(II) complexes

. 2024 Apr 15 ; 10 (7) : e29051. [epub] 20240402

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38601653
Odkazy

PubMed 38601653
PubMed Central PMC11004567
DOI 10.1016/j.heliyon.2024.e29051
PII: S2405-8440(24)05082-5
Knihovny.cz E-zdroje

A series of nine 2,3-disubstituted-quinazolin-4(3H)-one derived Schiff bases and their three Cu(II) complexes was prepared and tested for their antimicrobial activities against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the substances were tested in vitro against Mycobacterium tuberculosis H37Ra ATCC 25177, M. kansasii DSM 44162 and M. smegmatis ATCC 700084. While anti-enterococcal and antimycobacterial activities were insignificant, 3-[(E)-(2-hydroxy-5-nitrobenzylidene)amino]-2-(2-hydroxy-5-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (SB3) and its Cu(II) complex (SB3-Cu) demonstrated bacteriostatic antistaphylococcal activity. In addition, both compounds, as well as the other two prepared complexes, showed antibiofilm activity, which resulted in a reduction of biofilm formation and eradication of mature S. aureus biofilm by 80% even at concentrations lower than the values of their minimum inhibitory concentrations. In addition, the compounds were tested for their cytotoxic effect on the human monocytic leukemia cell line THP-1. The antileukemic efficiency was improved by the preparation of Cu(II) complexes from the corresponding non-chelated Schiff base ligands.

Zobrazit více v PubMed

Polanski J., Kurczyk A., Bak A., Musiol R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem. 2012;19:1921–1945. doi: 10.2174/092986712800167356. PubMed DOI

Cavalli A., Lizzi F., Bongarzone S., Brun R., Luise Krauth-Siegel R., Bolognesi M.L. Privileged structure-guided synthesis of quinazoline derivatives as inhibitors of trypanothione reductase. Bioorg Med Chem Lett. 2009;19:3031–3035. doi: 10.1016/j.bmcl.2009.04.060. PubMed DOI

Mrozek-Wilczkiewicz A., Kalinowski D.S., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., Ratuszna A., Rzeszowska-Wolny J., Richardson D.R., Polanski J. Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI

Jafari E., Khajouei M.R., Hassanzadeh F., Hakimelahi G.H., Khodarahmi G.A. Quinazolinone and quinazoline derivatives: recent structures with potent antimicrobial and cytotoxic activities. Res Pharm Sci. 2016;11:1–14. PubMed PMC

Alsibaee A.M., Al-Yousef H.M., Al-Salem H.S. Quinazolinones, the winning horse in drug discovery. Molecules. 2023;28:978. doi: 10.3390/molecules28030978. PubMed DOI PMC

Shang X.F., Morris-Natschke S.L., Liu Y.Q., Guo X., Xu X.S., Goto M., Li J.C., Yang G.Z., Lee K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018;38:775–828. doi: 10.1002/med.21466. PubMed DOI PMC

Shang X.F., Morris-Natschke S.L., Yang G.Z., Liu Y.Q., Guo X., Xu X.S., Goto M., Li J.C., Zhang J.Y., Lee K.H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev. 2018;38:1614–1660. doi: 10.1002/med.21492. PubMed DOI PMC

Asif M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int J Med Chem. 2014;2014 doi: 10.1155/2014/395637. PubMed DOI PMC

Khan I., Ibrar A., Ahmed W., Saeed A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: the advances continue. Eur. J. Med. Chem. 2015;90:124–169. doi: 10.1016/j.ejmech.2014.10.084. PubMed DOI

da Silva C.M., da Silva D.L., Modolo L.V., Alves R.B., de Resende M.A., Martins C.V.B., de Fátima A. Schiff bases: a short review of their antimicrobial activities. J. Adv. Res. 2011;2:1–8. doi: 10.1016/j.jare.2010.05.004. DOI

Kajal A., Bala S., Kamboj S., Sharma N., Saini V. Schiff bases: a versatile pharmacophore. J Catalysts. 2013;2013 doi: 10.1155/2013/893512. DOI

Abu-Dief A.M., Mohamed I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni Suef Univ J Basic Appl Sci. 2015;14:119–133. doi: 10.1016/j.bjbas.2015.05.004. PubMed DOI PMC

Abu-Yamin A.A., Abduh M.S., Saghir S.A.M., Al-Gabri N. Synthesis, characterization and biological activities of new Schiff base compound and its lanthanide complexes. Pharmaceuticals. 2022;15:454. doi: 10.3390/ph15040454. PubMed DOI PMC

Roche V.F., Zito S.W., Lemke T., Williams D.A. eighth ed. Wolters Kluwer; Baltimore, MD, USA: 2019. Foye's Principles of Medicinal Chemistry.

Vinsova J., Cermakova K., Tomeckova A., Ceckova M., Jampilek J., Cermak P., Kunes J., Dolezal M., Staud F. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 2006;14:5850–5865. doi: 10.1016/j.bmc.2006.05.030. PubMed DOI

Imramovsky A., Pejchal V., Stepankova S., Vorcakova K., Jampilek J., Vanco J., Simunek P., Kralovec K., Bruckova L., Mandikova J., Trejtnar F. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors. Bioorg. Med. Chem. 2013;21:1735–1748. doi: 10.1016/j.bmc.2013.01.052. PubMed DOI

Kushkevych I., Kos J., Kollar P., Kralova K., Jampilek J. Activity of ring-substituted 8-hydroxyquinoline-2-carboxanilides against intestinal sulfate-reducing bacteria Desulfovibrio piger. Med. Chem. Res. 2018;27:278–284. doi: 10.1007/s00044-017-2067-7. DOI

Kos J., Ku C.F., Kapustikova I., Oravec M., Zhang H.J., Jampilek J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian influenza virus. ChemistrySelect. 2019;4:4582–4587. doi: 10.1002/slct.201900873. DOI

Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Cizek A., Jampilek J., Zięba A. Towards anticancer and antibacterial agents: design and synthesis of 1,2,3-triazol-quinobenzothiazine derivatives. Int. J. Mol. Sci. 2023;24 doi: 10.3390/ijms241713250. PubMed DOI PMC

Aremu O.S., Gopaul K., Kadam P., Singh M., Mocktar C., Singh P., Koorbanally N.A. Synthesis, characterization, anticancer and antibacterial activity of some novel pyrano[2,3-d]pyrimidinone carbonitrile derivatives. Anti Cancer Agents Med. Chem. 2017;17:719–725. doi: 10.2174/1871520616666160813213245. PubMed DOI

Felicio M.R., Silva O.N., Gonçalves S., Santos N.C., Franco O.L. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 2017;5:5. doi: 10.3389/fchem.2017.00005. PubMed DOI PMC

Diaconu D., Antoci V., Mangalagiu V., Amariucai-Mantu D., Mangalagiu I.I. Quinoline-imidazole/benzimidazole derivatives as dual-/multi-targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep. 2022;12 doi: 10.1038/s41598-022-21435-6. PubMed DOI PMC

Ugalde-Arbizu M., Aguilera-Correa J.J., Garcia-Almodovar V., Ovejero-Paredes K., Diaz-Garcia D., Esteban J., Paez P.L., Prashar S., San Sebastian E., Filice M., Gomez-Ruiz S. Dual anticancer and antibacterial properties of silica-based theranostic nanomaterials functionalized with coumarin343, folic acid and a cytotoxic organotin(IV) metallodrug. Pharmaceutics. 2023;15:560. doi: 10.3390/pharmaceutics15020560. PubMed DOI PMC

Campos L.E., Garibotto F., Angelina E., Kos J., Gonec T., Marvanova P., Vettorazzi M., Oravec M., Jendrzejewska I., Jampilek J., Alvarez S.E., Enriz R.D. Hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols, two new series of BRAF inhibitors. A theoretical and experimental study. Bioorg. Chem. 2020;103 doi: 10.1016/j.bioorg.2020.104145. PubMed DOI

Kisiel-Nawrot E., Pindjakova D., Latocha M., Bak A., Kozik V., Suwinska K., Sochanik A., Cizek A., Jampilek J., Zięba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms232315078. PubMed DOI PMC

Pindjakova D., Pilarova E., Pauk K., Michnova H., Hosek J., Magar P., Cizek A., Imramovsky A., Jampilek J. Study of biological activities and ADMET-related properties of salicylanilide-based peptidomimetics. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms231911648. PubMed DOI PMC

Bouley R., Ding D., Peng Z., Bastian M., Lastochkin E., Song W., Suckow M.A., Schroeder V.A., Wolter W.R., Mobashery S., Chang M. Structure-activity relationship for the 4(3H)-quinazolinone antibacterials. J. Med. Chem. 2016;59:5011–5021. doi: 10.1021/acs.jmedchem.6b00372. PubMed DOI PMC

Gatadi S., Lakshmi T.V., Nanduri S. 4(3H)-Quinazolinone derivatives: promising antibacterial drug leads. Eur. J. Med. Chem. 2019;170:157–172. doi: 10.1016/j.ejmech.2019.03.018. PubMed DOI

Qian Y., Allegretta G., Janardhanan J., Peng Z., Mahasenan K.V., Lastochkin E., Gozun M.M.N., Tejera S., Schroeder V.A., Wolter W.R., Feltzer R., Mobashery S., Chang M. Exploration of the structural space in 4(3H)-quinazolinone antibacterials. J. Med. Chem. 2020;63:5287–5296. doi: 10.1021/acs.jmedchem.0c00153. PubMed DOI PMC

Ceballos S., Kim C., Qian Y., Mobashery S., Chang M., Torres C. Susceptibility of methicillin-resistant Staphylococcus aureus to five quinazolinone antibacterials. Antimicrob. Agents Chemother. 2019;64 doi: 10.1128/AAC.01344-19. 19. PubMed DOI PMC

Masri A., Anwar A., Khan N.A., Shahbaz M.S., Khan K.M., Shahabuddin S., Siddiqui R. Antibacterial effects of quinazolin-4(3H)-one functionalized-conjugated silver nanoparticles. Antibiotics. 2019;8:179. doi: 10.3390/antibiotics8040179. PubMed DOI PMC

Hricoviniova Z., Hricovini M., Kozics K. New series of quinazolinone derived Schiff's bases: synthesis, spectroscopic properties and evaluation of their antioxidant and cytotoxic activity. Chem. Pap. 2018;72:1041–1053. doi: 10.1007/s11696-017-0345-y. DOI

Hricoviniova J., Hricoviniova Z., Kozics K. Antioxidant, cytotoxic, genotoxic, and DNA-protective potential of 2,3-Substituted quinazolinones: structure-activity relationship study. Int. J. Mol. Sci. 2021;22:610. doi: 10.3390/ijms22020610. PubMed DOI PMC

Nielsen I.B., Petersen M.Å., Lammich L., Nielsen M.B., Andersen L.H. Absorption studies of neutral retinal Schiff base chromophores. J. Phys. Chem. A. 2006;110:12592–12596. doi: 10.1021/jp064901r. PubMed DOI

Gurgul I., Hricoviniova J., Mazuryk O., Hricoviniova Z., Brindell M. Enhancement of the cytotoxicity of quinazolinone Schiff base derivatives with copper coordination. Inorganics. 2023;11:391. doi: 10.3390/inorganics11100391. DOI

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015 doi: 10.1155/2015/349534. PubMed DOI PMC

Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A., Literak I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI

WHO - 2021 Antibacterial agents in clinical and preclinical development: an overview and analysis. https://www.who.int/publications/i/item/9789240047655

Hricovini M., Hricovini M. Photochemically-induced anti-syn isomerization of quinazolinone-derived Schiff's bases: EPR, NMR and DFT analysis. Tetrahedron. 2017;73:252–261. doi: 10.1016/j.tet.2016.12.011. DOI

Hricovini M., Asher J., Hricovini M. Photochemical anti–syn isomerization around the –N–N= bond in heterocyclic imines. RSC Adv. 2020;10:5540–5550. doi: 10.1039/C9RA10730D. PubMed DOI PMC

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., Csollei J., Richardson D.R., Jampilek J. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg Med Chem Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., Jampilek J. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013;21:6531–6541. doi: 10.1016/j.bmc.2013.08.030. PubMed DOI

Kos J., Zadrazilova I., Nevin E., Soral M., Gonec T., Kollar P., Oravec M., Coffey A., O'Mahony J., Liptaj T., Kralova K., Jampilek J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg. Med. Chem. 2015;23:4188–4196. doi: 10.1016/j.bmc.2015.06.047. PubMed DOI

Gonec T., Kralova K., Pesko M., Jampilek J. Antimycobacterial N-alkoxyphenylhydroxynaphthalenecarboxamides affecting photosystem II. Bioorg Med Chem Lett. 2017;27:1881–1885. doi: 10.1016/j.bmcl.2017.03.050. PubMed DOI

Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., Cizek A., Jampilek J. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC

Pospisilova S., Michnova H., Kauerova T., Pauk K., Kollar P., Vinsova J., Imramovsky A., Cizek A., Jampilek J. In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci. Bioorg Med Chem Lett. 2018;28:2184–2188. doi: 10.1016/j.bmcl.2018.05.011. PubMed DOI

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Gonec T., Pindjakova D., Vrablova L., Strharsky T., Michnova H., Kauerova T., Kollar P., Oravec M., Jendrzejewska I., Cizek A., Jampilek J. Antistaphylococcal activities and ADME-Related properties of chlorinated arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals. 2022;15:715. doi: 10.3390/ph15060715. PubMed DOI PMC

Strharsky T., Pindjakova D., Kos J., Vrablova L., Michnova H., Hosek J., Strakova N., Lelakova V., Leva L., Kavanova L., Oravec M., Cizek A., Jampilek J. Study of biological activities and ADMET-Related properties of novel chlorinated N-arylcinnamamides. Int. J. Mol. Sci. 2022;23:3159. doi: 10.3390/ijms23063159. PubMed DOI PMC

Strharsky T., Pindjakova D., Kos J., Vrablova L., Smak P., Michnova H., Gonec T., Hosek J., Oravec M., Jendrzejewska I., Cizek A., Jampilek J. Trifluoromethylcinnamanilide Michael acceptors for treatment of resistant bacterial infections. Int. J. Mol. Sci. 2022;23 doi: 10.3390/ijms232315090. PubMed DOI PMC

Beyene B.B., Mihirteu A.M., Ayana M.T., Yibeltal A.W. Synthesis, characterization and antibacterial activity of metalloporphyrins: role of central metal ion. Results Chem. 2020;2 doi: 10.1016/j.rechem.2020.100073. DOI

Zhang J., Cheng P., Ma Y., Liu J., Miao Z., Ren D., Liu L. An efficient nano CuO-catalyzed synthesis and biological evaluation of quinazolinone Schiff base derivatives and bis-2,3-dihydroquinazolin-4(1H)-ones as potent antibacterial agents against Streptococcus lactis. Tetrahedron Lett. 2016;57:5271–5277. doi: 10.1016/j.tetlet.2016.10.047. DOI

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC

Zahedifard M., Faraj F.L., Paydar M., Yeng Looi C., Hajrezaei M., Hasanpourghadi M., Kamalidehghan B., N, Abdul Majid, Mohd Ali H., Ameen Abdulla M. Synthesis, characterization and apoptotic activity of quinazolinone Schiff base derivatives toward MCF-7 cells via intrinsic and extrinsic apoptosis pathways. Sci. Rep. 2015;5 doi: 10.1038/srep11544. PubMed DOI PMC

Measuring Cell Viability/Cytotoxicity, Dojindo EU GmbH, Munich, Germany. https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf. (Accessed 6 June 2023).

Grela E., Kozłowska J., Grabowiecka A. Current methodology of MTT assay in bacteria–A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI

Clinical and Laboratory Standards Institute . CLSI; Wayne, PA, USA: 2023. Performance Standards For Antimicrobial Susceptibility Testing; the 33rd Informational Supplement Document.

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Boston; MA, USA: 2014. Enterococci: from Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary.https://www.ncbi.nlm.nih.gov/books/NBK190432 PubMed

Ramos S., Silva V., Dapkevicius M.L.E., Igrejas G., Enterococci P. Poeta. From harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC

Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11 doi: 10.1128/mBio.02962-20. 20. PubMed DOI PMC

Loghmani S.B., Zitzow E., Koh G.C.C., Ulmer A., Veith N., Großeholz R., Rossnagel M., Loesch M., Aebersold R., Kreikemeyer B., Fiedler T., Kummer U. All driven by energy demand? Integrative comparison of metabolism of Enterococcus faecalis wildtype and a glutamine synthase mutant. Microbiol. Spectr. 2022;10 doi: 10.1128/spectrum.02400-21. PubMed DOI PMC

Hricoviniova Z. Surfactants of biological origin: the role of Mo(VI) and microwaves in the synthesis of xylan-based non-ionic surfactants. Carbohydr. Polym. 2016;144:297–304. doi: 10.1016/j.carbpol.2016.02.070. PubMed DOI

Fulop F., Simeonov M., Pihlaja K. Formation of 1,2-dihydroquinazolin-4(3H)-ones. Reinvestigation of a recently reported 1,3,-4-benzotriazepine synthesis. Tetrahedron. 1992;48:531–538. doi: 10.1016/S0040-4020(01)89014-1. DOI

Gudasi K.B., Patil S.A., Vadavi R.S., Shenoy R.V., Nethaji M. Crystal structure of 2-[2-hydroxy-3-methoxyphenyl]-3-[2-hydroxy-3-methoxybenzylamino]-1,2-dihydroquinazolin-4(3H)-one and the synthesis, spectral and thermal investigation of its transition metal complexes. Trans Metal Chem. 2006;31:586–592. doi: 10.1007/s11243-006-0034-0. DOI

Srivastava K.P., Putul O.P., Kumar N. Facile eco-friendly synthesis, characterisation and evaluation of antimicrobial activity of Cu(II) complexes of tridentate ligands. Der Pharma Chem. 2016;8:105–116. http://derpharmachemica.com/archive.html

Hricoviniova Z., Mascaretti S., Hricoviniova J., Cizek A., Jampilek J. New unnatural gallotannins: a way toward green antioxidants, antimicrobials and antibiofilm agents. Antioxidants. 2021;10:1288. doi: 10.3390/antiox10081288. PubMed DOI PMC

Schwalbe R., Steele-Moore L., Goodwin A.C. CRC Press; Boca Raton, FL, USA: 2007. Antimicrobial Susceptibility Testing Protocols.

Masarovicova E., Kralova K. Handbook of Photosynthesis. second ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. Approaches to measuring plant photosynthesis activity; pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...