Towards Anticancer and Antibacterial Agents: Design and Synthesis of 1,2,3-Triazol-quinobenzothiazine Derivatives

. 2023 Aug 26 ; 24 (17) : . [epub] 20230826

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37686059

In this paper, we describe a new method for synthesizing hybrid combinations of 1,2,3-triazoles with a tetracyclic quinobenzothiazinium system. The developed approach allowed for the production of a series of new azaphenothiazine derivatives with the 1,2,3-triazole system in different positions of the benzene ring. In practice, the methodology consists of the reaction of triazole aniline derivatives with thioquinanthrenediinium bis-chloride. The structure of the products was determined by 1H-NMR, 13C-NMR spectroscopy, and HR-MS spectrometry, respectively. Moreover, the spatial structure of the molecule and the arrangement of molecules in the crystal (unit cell) were determined by X-ray crystallography. The anticancer activity profiles of the synthesized compounds were tested in vitro against human cancer cells of the A549, SNB-19, and T47D lines and the normal NHDF cell line. Additional tests of antibacterial activity against methicillin-sensitive and methicillin-resistant staphylococci, vancomycin-sensitive and vancomycin-resistant enterococci, and two mycobacterial strains were also performed. In fact, the dependence of anticancer and antibacterial activity on the substituent type and its position in the quinobenzothiazinium system was observed. Furthermore, the distance-guided property evaluation was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of the calculated descriptors. Finally, the theoretically approximated partition coefficients (clogP) were (inter-)correlated with each other and cross-compared with the empirically specified logPTLC parameters.

Zobrazit více v PubMed

Posso M.C., Domingues F.C., Ferreira S., Silvestre S. Development of phenothiazine hybrids with potential medicinal interest: A review. Molecules. 2022;27:276. doi: 10.3390/molecules27010276. PubMed DOI PMC

Varga B., Csonka Á., Csonka A., Molnár J., Amaral L., Spengler G. Possible biological and clinical applications of Ppenothiazines. Anticancer Res. 2017;37:5983–5993. PubMed

Mitchell S.C. Phenothiazine: The parent molecule. Curr. Drug Targ. 2006;7:1181–1189. doi: 10.2174/138945006778226552. PubMed DOI

Baldessarini R.J., Tarazi F.I. Pharmacotherapy of psychosis and mania. In: Brunton L.L., editor. Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill Medical Publishing Division; New York, NY, USA: 2006. pp. 461–500.

Mosnaim A.D., Ranade V.V., Wolf M.E., Puente J., Valenzuela M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Therapeut. 2006;13:261–273. doi: 10.1097/01.mjt.0000212897.20458.63. PubMed DOI

Zieba A., Czuba Z., Król W. In vitro antimicrobial activity of novel azaphenothiazine derivatives. Acta Pol. Pharm. Drug Res. 2012;69:1149–1152. PubMed

Kisiel-Nawrot E., Latocha M., Bak A., Kozik V., Jampilek J., Zieba A. Anticancer efficacy of antibacterial quinobenzothiazines. Appl. Sci. 2023;13:2886. doi: 10.3390/app13052886. PubMed DOI PMC

Zięba A., Maślankiewicz A., Suwińska K. 1-Alkyl-4-(arylamino)quinolinium-3-thiolates and 7-alkyl-12H-quino[3,4-b]-1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000;16:2947–2953. doi: 10.1002/1099-0690(200008)2000:16<2947::AID-EJOC2947>3.0.CO;2-U. DOI

Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC

Hein J.E., Fokin V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev. 2010;39:1302–1315. doi: 10.1039/b904091a. PubMed DOI PMC

Khar R., Sharma P.C., Yar M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem. 2011;26:1–21. doi: 10.3109/14756360903524304. PubMed DOI

Thirumurugan P., Matosiuk D., Jóźwiak K. Click chemistry for drug development and diverse chemical-biology application. Chem. Rev. 2013;113:4905–49792. doi: 10.1021/cr200409f. PubMed DOI

Sharma J., Ahmad S., Alam M.S. Bioactive triazoles: A potential review. J. Chem. Pharm. Res. 2012;4:5157–5164.

Lau Y.H., Rutledge P.J., Watkinson M., Todd M.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev. 2011;40:2848–2866. doi: 10.1039/c0cs00143k. PubMed DOI

El-Sagheer A.H., Brown T. Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res. 2012;45:1258–1267. doi: 10.1021/ar200321n. PubMed DOI PMC

Sangshetti J.N., Shinde D.B. Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents. Eur. J. Med. Chem. 2011;46:1040–1044. doi: 10.1016/j.ejmech.2011.01.015. PubMed DOI

Singh H., Sindhu J., Khurana J.M., Sharma C., Aneja K.R. Syntheses, biological evaluation and photophysical studies of novel 1,2,3-triazole linked azo dyes. RSC Adv. 2014;4:5915. doi: 10.1039/c3ra44314k. DOI

Chandrika P.M., Yakaiah T., Gayatri G., Kumar K.P., Narsaiah B., Murthy U.S.N., Rao A.R.R. Click chemistry: Studies on the synthesis of novel fluorous tagged triazol-4-yl substituted quinazoline derivatives and their biological evaluation–Theoretical and experimental validation. Eur. J. Med. Chem. 2010;45:78–84. doi: 10.1016/j.ejmech.2009.09.027. PubMed DOI

Buckle D.R., Rockell C.J., Smith H., Spicer B.A. Studies on 1,2,3-triazoles. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides. J. Med. Chem. 1984;27:223–227. doi: 10.1021/jm00368a021. PubMed DOI

Montagu A., Roy V., Balzarini J., Snoeck R., Andrei G., Agrofoglio L.A. Synthesis of new C5-(1-substituted-1,2,3-triazol-4 or 5-yl)-20-deoxyuridines and their antiviral evaluation. Eur. J. Med. Chem. 2011;46:778–786. doi: 10.1016/j.ejmech.2010.12.017. PubMed DOI

Cheng H., Wan J., Lin M.I., Liu Y., Lu X., Liu J., Xu Y., Chen J., Tu Z., Cheng Y.S.E., et al. Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza agents targeting virus nucleoprotein. J. Med. Chem. 2012;55:2144–2153. doi: 10.1021/jm2013503. PubMed DOI

Boechat N., Ferreira V.F., Ferreira S.B., Ferreira M.L.G., Silva F.C., Bastos M.M., Costa M.S., Lourenco M.C.S., Pinto A.C., Krettli A.U., et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) Strain. J. Med. Chem. 2011;54:5988–5999. doi: 10.1021/jm2003624. PubMed DOI

Pulipati L., Yogeeswari P., Sriram D., Kantevari S. Click-based synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene-1,2,3-triazoles with piperidine, piperazine, morpholine and thiomorpholine appendages. Bioorg. Med. Chem. Lett. 2016;26:2649–2654. doi: 10.1016/j.bmcl.2016.04.015. PubMed DOI

Angajala K.K., Vianala S., Macha R., Raghavender M., Thupuran M.K., Pathi P.J. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry. Springer Plus. 2016;5:423. doi: 10.1186/s40064-016-2052-5. PubMed DOI PMC

Mutschler E., Geisslinger G., Kroemer H.K., Ruth P., Schafer-Korting M. Farmakologia i Toksykologia. 3rd ed. MedPharma Polska; Wrocław, Poland: 2013. pp. 143–385.

Addla D., Jallapally A., Divya Gurram D., Yogeeswari P., Sriram D., Kantevari S. Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids. Bioorg. Med. Chem. Lett. 2014;24:233–236. doi: 10.1016/j.bmcl.2013.11.031. PubMed DOI

Reddyrajula R., Dalimba U., Kumar S.M. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem. 2019;168:263–282. doi: 10.1016/j.ejmech.2019.02.010. PubMed DOI

Nycz-Emper A., Bober K., Wyszomirski M., Kisiel E., Zięba A. The application of CA and PCA to the evaluation of lipophilicity and physicochemical properties of tetracyclic diazaphenothiazine derivatives. J. Anal. Methods Chem. 2019;20:8131235. PubMed PMC

Zieba A., Wojtyczka R.D., Idzik D., Kepa M. Synthesis and in vitro antimicrobial activity of 1-methyl-3-sulfonylthio-4-aminoquinolinium chlorides. Acta Pol. Pharm. 2013;70:163–166. PubMed

Zieba A., Sochanik A., Szurko A., Rams M., Mrozek A., Cmoch P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010;45:4733–4739. doi: 10.1016/j.ejmech.2010.07.035. PubMed DOI

Pivetta T.P., Vieira T., Silva J.C., Ribeiro P.A., Raposo M. Phototoxic potential of different DNA intercalators for skin cancer therapy: In vitro screening. Int. J. Mol. Sci. 2023;24:5602. doi: 10.3390/ijms24065602. PubMed DOI PMC

Zięba A., Latocha M., Sochanik A., Nycz A., Kuśmierz D. Synthesis and in vitro antiproliferative activity of novel phenyl ring-substituted5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Molecules. 2016;21:1455. doi: 10.3390/molecules21111455. PubMed DOI PMC

Kisiel-Nawrot E., Pindjakova D., Latocha M., Bąk A., Kozik V., Suwińska K., Sochanik A., Cizek A., Jampilek J., Zięba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23:15078. doi: 10.3390/ijms232315078. PubMed DOI PMC

Siles R., Kawasaki Y., Ross P., Freire E. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases. Bioorg. Med. Chem. Lett. 2011;21:5305–5309. doi: 10.1016/j.bmcl.2011.07.023. PubMed DOI PMC

Klaveren S., Dernovsek J., Jakopin Z., Anderluh M., Leffler H., Nilsson U.J., Tomasic T. Design and synthesis of novel 3-triazolyl-1-thiogalactosides as galectin-1,-3 and -8 inhibitors. RSC Adv. 2022;12:18973. doi: 10.1039/D2RA03163A. PubMed DOI PMC

Dmitrenko O., Chaplin A., Balbutskaya A., Pkhakadze T., Alkhovsky S. In silico genome-scale analysis of molecular mechanisms contributing to the development of a persistent infection with methicillin-resistant Staphylococcus aureus (MRSA) ST239. Int. J. Mol. Sci. 2022;23:16086. doi: 10.3390/ijms232416086. PubMed DOI PMC

Russo A., Picciarella A., Russo R., d’Ettorre G., Ceccarelli G. Time to effective therapy is an important determinant of survival in bloodstream infections caused by Vancomycin-resistant Enterococcus spp. Int. J. Mol. Sci. 2022;23:11925. doi: 10.3390/ijms231911925. PubMed DOI PMC

Luukinen H., Hammaren M.M., Vanha-Aho L.M., Parikka M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018;140:58299. PubMed PMC

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Portela C.A., Smart K.F., Tumanov S., Cook G.M., Villas-Boas S.G. Global metabolic response of Enterococcus faecalis to oxygen. J. Bacteriol. 2014;196:2012–2022. doi: 10.1128/JB.01354-13. PubMed DOI PMC

Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC

Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962-20. doi: 10.1128/mBio.02962-20. PubMed DOI PMC

Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public. Health. 2020;13:1255–1264. PubMed

Bedaquilin. DrugBank. [(accessed on 6 July 2023)]. Available online: https://go.drugbank.com/drugs/DB08903.

Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 6 July 2023)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.

Bueno J. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. IntechOpen; Rijeka, Croatia: 2012. Antitubercular in vitro drug discovery: Tools for begin the search; pp. 147–168.

Chavan S., Nicholls I.A., Karlsson B.C.G., Rosengren A.M., Ballabio D., Consonni V., Todeschini R. Towards global QSAR model building for acute toxicity: Munro database case study. Int. J. Mol. Sci. 2014;15:18162–18174. doi: 10.3390/ijms151018162. PubMed DOI PMC

Silva L.B., Ferreira E.F.B., Maryam, Espejo-Román J.M., Costa G.V., Cruz J.V., Kimani N.M., Costa J.S., Bittencourt J.A.H.M., Cruz J.N., et al. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. Molecules. 2023;28:1035. doi: 10.3390/molecules28031035. PubMed DOI PMC

Andersen C.M., Bro R. Variable selection in regression—A tutorial. J. Chemom. 2010;24:728–737. doi: 10.1002/cem.1360. DOI

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8. PubMed PMC

Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC

Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC

Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC

Abate G., Mshana R.N., Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace