Towards Anticancer and Antibacterial Agents: Design and Synthesis of 1,2,3-Triazol-quinobenzothiazine Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37686059
PubMed Central
PMC10487436
DOI
10.3390/ijms241713250
PII: ijms241713250
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, anticancer activity, azaphenothiazines, phenothiazine,
- MeSH
- antibakteriální látky * farmakologie MeSH
- buněčné linie MeSH
- chloridy MeSH
- lidé MeSH
- shluková analýza MeSH
- vankomycin * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- chloridy MeSH
- vankomycin * MeSH
In this paper, we describe a new method for synthesizing hybrid combinations of 1,2,3-triazoles with a tetracyclic quinobenzothiazinium system. The developed approach allowed for the production of a series of new azaphenothiazine derivatives with the 1,2,3-triazole system in different positions of the benzene ring. In practice, the methodology consists of the reaction of triazole aniline derivatives with thioquinanthrenediinium bis-chloride. The structure of the products was determined by 1H-NMR, 13C-NMR spectroscopy, and HR-MS spectrometry, respectively. Moreover, the spatial structure of the molecule and the arrangement of molecules in the crystal (unit cell) were determined by X-ray crystallography. The anticancer activity profiles of the synthesized compounds were tested in vitro against human cancer cells of the A549, SNB-19, and T47D lines and the normal NHDF cell line. Additional tests of antibacterial activity against methicillin-sensitive and methicillin-resistant staphylococci, vancomycin-sensitive and vancomycin-resistant enterococci, and two mycobacterial strains were also performed. In fact, the dependence of anticancer and antibacterial activity on the substituent type and its position in the quinobenzothiazinium system was observed. Furthermore, the distance-guided property evaluation was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of the calculated descriptors. Finally, the theoretically approximated partition coefficients (clogP) were (inter-)correlated with each other and cross-compared with the empirically specified logPTLC parameters.
Institute of Chemistry University of Silesia Szkolna 9 40 006 Katowice Poland
Institute of Neuroimmunology Slovak Academy of Sciences Dubravska Cesta 9 845 10 Bratislava Slovakia
Zobrazit více v PubMed
Posso M.C., Domingues F.C., Ferreira S., Silvestre S. Development of phenothiazine hybrids with potential medicinal interest: A review. Molecules. 2022;27:276. doi: 10.3390/molecules27010276. PubMed DOI PMC
Varga B., Csonka Á., Csonka A., Molnár J., Amaral L., Spengler G. Possible biological and clinical applications of Ppenothiazines. Anticancer Res. 2017;37:5983–5993. PubMed
Mitchell S.C. Phenothiazine: The parent molecule. Curr. Drug Targ. 2006;7:1181–1189. doi: 10.2174/138945006778226552. PubMed DOI
Baldessarini R.J., Tarazi F.I. Pharmacotherapy of psychosis and mania. In: Brunton L.L., editor. Goodman and Gilman’s the Pharmacological Basis of Therapeutics. 11th ed. McGraw-Hill Medical Publishing Division; New York, NY, USA: 2006. pp. 461–500.
Mosnaim A.D., Ranade V.V., Wolf M.E., Puente J., Valenzuela M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Therapeut. 2006;13:261–273. doi: 10.1097/01.mjt.0000212897.20458.63. PubMed DOI
Zieba A., Czuba Z., Król W. In vitro antimicrobial activity of novel azaphenothiazine derivatives. Acta Pol. Pharm. Drug Res. 2012;69:1149–1152. PubMed
Kisiel-Nawrot E., Latocha M., Bak A., Kozik V., Jampilek J., Zieba A. Anticancer efficacy of antibacterial quinobenzothiazines. Appl. Sci. 2023;13:2886. doi: 10.3390/app13052886. PubMed DOI PMC
Zięba A., Maślankiewicz A., Suwińska K. 1-Alkyl-4-(arylamino)quinolinium-3-thiolates and 7-alkyl-12H-quino[3,4-b]-1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000;16:2947–2953. doi: 10.1002/1099-0690(200008)2000:16<2947::AID-EJOC2947>3.0.CO;2-U. DOI
Empel A., Bak A., Kozik V., Latocha M., Cizek A., Jampilek J., Suwinska K., Sochanik A., Zieba A. Towards property profiling: Synthesis and SAR probing of new tetracyclic diazaphenothiazine analogues. Int. J. Mol. Sci. 2021;22:12826. doi: 10.3390/ijms222312826. PubMed DOI PMC
Hein J.E., Fokin V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev. 2010;39:1302–1315. doi: 10.1039/b904091a. PubMed DOI PMC
Khar R., Sharma P.C., Yar M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem. 2011;26:1–21. doi: 10.3109/14756360903524304. PubMed DOI
Thirumurugan P., Matosiuk D., Jóźwiak K. Click chemistry for drug development and diverse chemical-biology application. Chem. Rev. 2013;113:4905–49792. doi: 10.1021/cr200409f. PubMed DOI
Sharma J., Ahmad S., Alam M.S. Bioactive triazoles: A potential review. J. Chem. Pharm. Res. 2012;4:5157–5164.
Lau Y.H., Rutledge P.J., Watkinson M., Todd M.H. Chemical sensors that incorporate click-derived triazoles. Chem. Soc. Rev. 2011;40:2848–2866. doi: 10.1039/c0cs00143k. PubMed DOI
El-Sagheer A.H., Brown T. Click nucleic acid ligation: Applications in biology and nanotechnology. Acc. Chem. Res. 2012;45:1258–1267. doi: 10.1021/ar200321n. PubMed DOI PMC
Sangshetti J.N., Shinde D.B. Synthesis of some novel 3-(1-(1-substitutedpiperidin-4-yl)-1H-1,2,3-triazol-4-yl)-5-substituted phenyl-1,2,4-oxadiazoles as antifungal agents. Eur. J. Med. Chem. 2011;46:1040–1044. doi: 10.1016/j.ejmech.2011.01.015. PubMed DOI
Singh H., Sindhu J., Khurana J.M., Sharma C., Aneja K.R. Syntheses, biological evaluation and photophysical studies of novel 1,2,3-triazole linked azo dyes. RSC Adv. 2014;4:5915. doi: 10.1039/c3ra44314k. DOI
Chandrika P.M., Yakaiah T., Gayatri G., Kumar K.P., Narsaiah B., Murthy U.S.N., Rao A.R.R. Click chemistry: Studies on the synthesis of novel fluorous tagged triazol-4-yl substituted quinazoline derivatives and their biological evaluation–Theoretical and experimental validation. Eur. J. Med. Chem. 2010;45:78–84. doi: 10.1016/j.ejmech.2009.09.027. PubMed DOI
Buckle D.R., Rockell C.J., Smith H., Spicer B.A. Studies on 1,2,3-triazoles. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides. J. Med. Chem. 1984;27:223–227. doi: 10.1021/jm00368a021. PubMed DOI
Montagu A., Roy V., Balzarini J., Snoeck R., Andrei G., Agrofoglio L.A. Synthesis of new C5-(1-substituted-1,2,3-triazol-4 or 5-yl)-20-deoxyuridines and their antiviral evaluation. Eur. J. Med. Chem. 2011;46:778–786. doi: 10.1016/j.ejmech.2010.12.017. PubMed DOI
Cheng H., Wan J., Lin M.I., Liu Y., Lu X., Liu J., Xu Y., Chen J., Tu Z., Cheng Y.S.E., et al. Design, synthesis, and in vitro biological evaluation of 1H-1,2,3-triazole-4-carboxamide derivatives as new anti-influenza agents targeting virus nucleoprotein. J. Med. Chem. 2012;55:2144–2153. doi: 10.1021/jm2013503. PubMed DOI
Boechat N., Ferreira V.F., Ferreira S.B., Ferreira M.L.G., Silva F.C., Bastos M.M., Costa M.S., Lourenco M.C.S., Pinto A.C., Krettli A.U., et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) Strain. J. Med. Chem. 2011;54:5988–5999. doi: 10.1021/jm2003624. PubMed DOI
Pulipati L., Yogeeswari P., Sriram D., Kantevari S. Click-based synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene-1,2,3-triazoles with piperidine, piperazine, morpholine and thiomorpholine appendages. Bioorg. Med. Chem. Lett. 2016;26:2649–2654. doi: 10.1016/j.bmcl.2016.04.015. PubMed DOI
Angajala K.K., Vianala S., Macha R., Raghavender M., Thupuran M.K., Pathi P.J. Synthesis, anti-inflammatory, bactericidal activities and docking studies of novel 1,2,3-triazoles derived from ibuprofen using click chemistry. Springer Plus. 2016;5:423. doi: 10.1186/s40064-016-2052-5. PubMed DOI PMC
Mutschler E., Geisslinger G., Kroemer H.K., Ruth P., Schafer-Korting M. Farmakologia i Toksykologia. 3rd ed. MedPharma Polska; Wrocław, Poland: 2013. pp. 143–385.
Addla D., Jallapally A., Divya Gurram D., Yogeeswari P., Sriram D., Kantevari S. Rational design, synthesis and antitubercular evaluation of novel 2-(trifluoromethyl)phenothiazine-[1,2,3]triazole hybrids. Bioorg. Med. Chem. Lett. 2014;24:233–236. doi: 10.1016/j.bmcl.2013.11.031. PubMed DOI
Reddyrajula R., Dalimba U., Kumar S.M. Molecular hybridization approach for phenothiazine incorporated 1,2,3-triazole hybrids as promising antimicrobial agents: Design, synthesis, molecular docking and in silico ADME studies. Eur. J. Med. Chem. 2019;168:263–282. doi: 10.1016/j.ejmech.2019.02.010. PubMed DOI
Nycz-Emper A., Bober K., Wyszomirski M., Kisiel E., Zięba A. The application of CA and PCA to the evaluation of lipophilicity and physicochemical properties of tetracyclic diazaphenothiazine derivatives. J. Anal. Methods Chem. 2019;20:8131235. PubMed PMC
Zieba A., Wojtyczka R.D., Idzik D., Kepa M. Synthesis and in vitro antimicrobial activity of 1-methyl-3-sulfonylthio-4-aminoquinolinium chlorides. Acta Pol. Pharm. 2013;70:163–166. PubMed
Zieba A., Sochanik A., Szurko A., Rams M., Mrozek A., Cmoch P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010;45:4733–4739. doi: 10.1016/j.ejmech.2010.07.035. PubMed DOI
Pivetta T.P., Vieira T., Silva J.C., Ribeiro P.A., Raposo M. Phototoxic potential of different DNA intercalators for skin cancer therapy: In vitro screening. Int. J. Mol. Sci. 2023;24:5602. doi: 10.3390/ijms24065602. PubMed DOI PMC
Zięba A., Latocha M., Sochanik A., Nycz A., Kuśmierz D. Synthesis and in vitro antiproliferative activity of novel phenyl ring-substituted5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Molecules. 2016;21:1455. doi: 10.3390/molecules21111455. PubMed DOI PMC
Kisiel-Nawrot E., Pindjakova D., Latocha M., Bąk A., Kozik V., Suwińska K., Sochanik A., Cizek A., Jampilek J., Zięba A. Design, synthesis and antimicrobial properties of new tetracyclic quinobenzothiazine derivatives. Int. J. Mol. Sci. 2022;23:15078. doi: 10.3390/ijms232315078. PubMed DOI PMC
Siles R., Kawasaki Y., Ross P., Freire E. Synthesis and biochemical evaluation of triazole/tetrazole-containing sulfonamides against thrombin and related serine proteases. Bioorg. Med. Chem. Lett. 2011;21:5305–5309. doi: 10.1016/j.bmcl.2011.07.023. PubMed DOI PMC
Klaveren S., Dernovsek J., Jakopin Z., Anderluh M., Leffler H., Nilsson U.J., Tomasic T. Design and synthesis of novel 3-triazolyl-1-thiogalactosides as galectin-1,-3 and -8 inhibitors. RSC Adv. 2022;12:18973. doi: 10.1039/D2RA03163A. PubMed DOI PMC
Dmitrenko O., Chaplin A., Balbutskaya A., Pkhakadze T., Alkhovsky S. In silico genome-scale analysis of molecular mechanisms contributing to the development of a persistent infection with methicillin-resistant Staphylococcus aureus (MRSA) ST239. Int. J. Mol. Sci. 2022;23:16086. doi: 10.3390/ijms232416086. PubMed DOI PMC
Russo A., Picciarella A., Russo R., d’Ettorre G., Ceccarelli G. Time to effective therapy is an important determinant of survival in bloodstream infections caused by Vancomycin-resistant Enterococcus spp. Int. J. Mol. Sci. 2022;23:11925. doi: 10.3390/ijms231911925. PubMed DOI PMC
Luukinen H., Hammaren M.M., Vanha-Aho L.M., Parikka M. Modeling tuberculosis in Mycobacterium marinum infected adult Zebrafish. J. Vis. Exp. 2018;140:58299. PubMed PMC
Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI
Portela C.A., Smart K.F., Tumanov S., Cook G.M., Villas-Boas S.G. Global metabolic response of Enterococcus faecalis to oxygen. J. Bacteriol. 2014;196:2012–2022. doi: 10.1128/JB.01354-13. PubMed DOI PMC
Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms. 2020;8:1118. doi: 10.3390/microorganisms8081118. PubMed DOI PMC
Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio. 2020;11:e02962-20. doi: 10.1128/mBio.02962-20. PubMed DOI PMC
Sundarsingh J.A.T., Ranjitha J., Rajan A., Shankar V. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J. Inf. Public. Health. 2020;13:1255–1264. PubMed
Bedaquilin. DrugBank. [(accessed on 6 July 2023)]. Available online: https://go.drugbank.com/drugs/DB08903.
Measuring Cell Viability/Cytotoxicity. Dojindo EU GmbH, Munich, Germany. [(accessed on 6 July 2023)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.
Bueno J. Understanding Tuberculosis—New Approaches to Fighting Against Drug Resistance. IntechOpen; Rijeka, Croatia: 2012. Antitubercular in vitro drug discovery: Tools for begin the search; pp. 147–168.
Chavan S., Nicholls I.A., Karlsson B.C.G., Rosengren A.M., Ballabio D., Consonni V., Todeschini R. Towards global QSAR model building for acute toxicity: Munro database case study. Int. J. Mol. Sci. 2014;15:18162–18174. doi: 10.3390/ijms151018162. PubMed DOI PMC
Silva L.B., Ferreira E.F.B., Maryam, Espejo-Román J.M., Costa G.V., Cruz J.V., Kimani N.M., Costa J.S., Bittencourt J.A.H.M., Cruz J.N., et al. Galantamine based novel acetylcholinesterase enzyme inhibitors: A molecular modeling design approach. Molecules. 2023;28:1035. doi: 10.3390/molecules28031035. PubMed DOI PMC
Andersen C.M., Bro R. Variable selection in regression—A tutorial. J. Chemom. 2010;24:728–737. doi: 10.1002/cem.1360. DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015;C71:3–8. PubMed PMC
Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC
Gonec T., Zadrazilova I., Nevin E., Kauerova T., Pesko M., Kos J., Oravec M., Kollar P., Coffey A., O’Mahony J., et al. Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides. Molecules. 2015;20:9767–9787. doi: 10.3390/molecules20069767. PubMed DOI PMC
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC
Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC
Abate G., Mshana R.N., Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998;2:1011–1016. PubMed
Design, Synthesis, and Anticancer and Antibacterial Activities of Quinoline-5-Sulfonamides