Towards Property Profiling: SYNTHESIS and SAR Probing of New Tetracyclic Diazaphenothiazine Analogues

. 2021 Nov 26 ; 22 (23) : . [epub] 20211126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34884631

A series of new tertiary phenothiazine derivatives containing a quinoline and a pyridine fragment was synthesized by the reaction of 1-methyl-3-benzoylthio-4-butylthioquinolinium chloride with 3-aminopyridine derivatives bearing various substituents on the pyridine ring. The direction and mechanism of the cyclization reaction of intermediates with the structure of 1-methyl-4-(3-pyridyl)aminoquinolinium-3-thiolate was related to the substituents in the 2- and 4-pyridine position. The structures of the compounds were analyzed using 1H, 13C NMR (COSY, HSQC, HMBC) and X-ray analysis, respectively. Moreover, the antiproliferative activity against tumor cells (A549, T47D, SNB-19) and a normal cell line (NHDF) was tested. The antibacterial screening of all the compounds was conducted against the reference and quality control strain Staphylococcus aureus ATCC 29213, three clinical isolates of methicillin-resistant S. aureus (MRSA). In silico computation of the intermolecular similarity was performed using principal component analysis (PCA) and hierarchical clustering analysis (HCA) on the pool of structure/property-related descriptors calculated for the novel tetracyclic diazaphenothiazine derivatives. The distance-oriented property evaluation was correlated with the experimental anticancer activities and empirical lipophilicity as well. The quantitative shape-based comparison was conducted using the CoMSA method in order to indicate the potentially valid steric, electronic and lipophilic properties. Finally, the numerical sampling of similarity-related activity landscape (SALI) provided a subtle picture of the SAR trends.

Zobrazit více v PubMed

Sneader W. Chronology of drug introduction. In: Hansch C., Sammes P.G., Taylor J.B., editors. Comprehensive Medicinal Chemistry. The Rational Design, Mechanistic Study and Therapeutic Application of Chemical Compounds. Volume 1. Pergamon Press; Oxford, UK: 1990. pp. 7–80.

Li J.J. Heterocyclic Chemistry in Drug Discovery. Wiley; Hoboken, NJ, USA: 2013. pp. 1–16.

Gupta R.R., Kumar M. Phenothiazine and 1,4-Benzothiazines–Chemical and Biological Aspect. Elsevier; Amsterdam, The Netherlands: 1988. Synthesis properties and reactions of phenothiazines; pp. 1–161.

Mosnaim A.D., Ranade V.V., Wolf M.E., Puente J., Valenzuela M.A. Phenothiazine molecule provides the basic chemical structure for various classes of pharmacotherapeutic agents. Am. J. Therapeut. 2006;13:261–273. doi: 10.1097/01.mjt.0000212897.20458.63. PubMed DOI

Zięba A., Czuba Z., Król W. In vitro antimicrobial activity of novel azapheno thiazine derivatives. Acta Pol. Pharm. Drug Res. 2012;69:1149–1152. PubMed

Jeleń M., Pluta K., Zimecki M., Morak-Młodawska B., Artym J., Kocięba M. 6-Substituted 9-fluoroquino[3,2-b]benzo[1,4]thiazines display strong antiproliferative and antitumor properties. Eur. J. Med. Chem. 2015;89:411–420. doi: 10.1016/j.ejmech.2014.10.070. PubMed DOI

Otręba M., Kośmider L., Rzepecka-Stojko A. Antiviral activity of chlorpromazine, fluphenazine, perphenazine, prochlorperazine, and thioridazine towards RNA-viruses. A review. Eur. J. Pharmacol. 2020;887:173553. doi: 10.1016/j.ejphar.2020.173553. PubMed DOI PMC

Warman A.J., Rito T.S., Fisher N.E., Moss D.M., Berry N.G., O’Neill P.M., Ward S.A., Biagini G.A. Antitubercular pharmacodynamics of phenothiazines. J. Antimicrob. Chemother. 2013;68:869–880. doi: 10.1093/jac/dks483. PubMed DOI PMC

Amaral L., Viveiros M., Kristiansen J.E. Phenothiazines: Potential alternatives for the management of antibiotic resistant infections of tuberculosis and malaria in developing countries. Trop. Int. Health. 2001;6:1016–1022. doi: 10.1046/j.1365-3156.2001.00804.x. PubMed DOI

Jeleń M., Bavavea E., Pappa M., Kourounakis A.P., Morak-Młodawska B., Pluta K. Synthesis of quinoline/naphthalene-containing azaphenothiazines and their potent in vitro antioxidant properties. Med. Chem. Res. 2015;24:1725–1732. doi: 10.1007/s00044-014-1247-y. PubMed DOI PMC

Zięba A., Maślankiewicz A., Suwińska K. 1-Alkyl-4-(arylamino)quinolinium-3-thiolate and 7-alkyl-12(H)-quino[3,4-b]1,4-benzothiazinium salts. Eur. J. Org. Chem. 2000;16:2947–2953. doi: 10.1002/1099-0690(200008)2000:16<2947::AID-EJOC2947>3.0.CO;2-U. DOI

Zięba A., Sochanik A., Szurko A., Rams M., Mrozek A., Cmoch P. Synthesis and in vitro antiproliferative activity of 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts. Eur. J. Med. Chem. 2010;45:4733–4739. doi: 10.1016/j.ejmech.2010.07.035. PubMed DOI

Zięba A., Latocha M., Sochanik A. Synthesis and in vitro antiproliferative activity of novel 12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Med. Chem. Res. 2013;22:4158–4163. doi: 10.1007/s00044-012-0384-4. PubMed DOI PMC

Zięba A., Latocha M., Sochanik A., Nycz A., Kuśmierz D. Synthesis and in vitro antiproliferative activity of novel phenyl ring-substituted 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazine derivatives. Molecules. 2016;21:1455. doi: 10.3390/molecules21111455. PubMed DOI PMC

Zięba A., Suwińska K. 1-Alkyl-4-(3-pyridinylamino)quinolinium-3-thiolates and their transformation into new diazaphenothiazine derivatives. Heterocycles. 2006;68:495–503. doi: 10.3987/COM-05-10654. DOI

Hann M.M., Keserü G.M. Finding the sweet spot: The role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 2012;11:355–365. doi: 10.1038/nrd3701. PubMed DOI

Bak A., Kozik V., Walczak M., Fraczyk J., Kaminski Z., Kolesinska B., Smolinski A., Jampilek J. Towards intelligent drug design system: Application of artificial dipeptide receptor library in QSAR-oriented studies. Molecules. 2018;23:1964. doi: 10.3390/molecules23081964. PubMed DOI PMC

Peltason L., Bajorath J. Systematic computational analysis of structure-activity relationships: Concepts, challenges and recent advances. Future Med. Chem. 2009;1:451–466. doi: 10.4155/fmc.09.41. PubMed DOI

Terfloth L. Calculation of structure descriptors. In: Gasteiger J., Engel T., editors. Chemoinformatics: A Textbook. Wiley VCH; Viernheim, Germany: 2003. p. 401.

De Almeida A.F., Moreira R., Rodrigues T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 2019;3:589–604. doi: 10.1038/s41570-019-0124-0. DOI

Devillers J. Methods for building QSARs. Methods Mol. Biol. 2013;930:3–27. PubMed

Bak A., Kozik V., Smolinski A., Jampilek J. Multidimensional (3D/4D-QSAR) probability-guided pharmacophore mapping: Investigation of activity profile for a series of drug absorption promoters. RSC Adv. 2016;6:76183–76205. doi: 10.1039/C6RA15820J. DOI

Bak A., Kozik V., Kozakiewicz D., Gajcy K., Strub D.J., Swietlicka A., Stepankova S., Imramovsky A., Polanski J., Smolinski A., et al. Novel benzene-based carbamates for AChE/BChE inhibition: Synthesis and ligand/structure-oriented SAR study. Int. J. Mol. Sci. 2019;20:1524. doi: 10.3390/ijms20071524. PubMed DOI PMC

Bak A., Pizova H., Kozik V., Vorcakova K., Kos J., Treml J., Odehnalova K., Oravec M., Imramovsky A., Bobal P., et al. SAR-mediated similarity assessment of the property profile for new, silicon-based AChE/BChE inhibitors. Int. J. Mol. Sci. 2019;20:5385. doi: 10.3390/ijms20215385. PubMed DOI PMC

Holliday J.D., Salim N., Whittle M., Willett P. Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 2003;43:819–828. doi: 10.1021/ci034001x. PubMed DOI

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Guha R., Van Drie J.H. Structure–activity landscape index: Identifying and quantifying activity cliffs. J. Chem. Inf. Model. 2008;48:646–658. doi: 10.1021/ci7004093. PubMed DOI

Bajorath J., Peltason L., Wawer M., Guha R., Lajiness M.S., Van Drie J.H. Navigating structure–activity landscapes. Drug Discov. Today. 2009;14:698–705. doi: 10.1016/j.drudis.2009.04.003. PubMed DOI

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC

Smolinski A., Drobek L., Dombek V., Bak A. Modeling of experimental data on trace elements and organic content in industrial waste dumps. Chemosphere. 2016;162:189–198. doi: 10.1016/j.chemosphere.2016.07.086. PubMed DOI

Smolinski A., Howaniec N., Bak A. Utilization of energy crops and sewage sludge in the process of co-gasificiation for sustainable hydrogen production. Energies. 2018;11:809. doi: 10.3390/en11040809. DOI

Bak A., Kozik V., Smolinski A., Jampilek J. In silico estimation of basic activity-relevant parameters for a set of drug absorption promoters. SAR QSAR Environ. Res. 2017;28:427–449. doi: 10.1080/1062936X.2017.1327459. PubMed DOI

Guha R., Van Drie J.H. Assessing how well a modeling protocol captures a structure—Activity landscape. J. Chem. Inf. Modeling. 2008;48:1716–1728. doi: 10.1021/ci8001414. PubMed DOI

Lopez-Lopez E., Prieto-Martínez F.D., Medina-Franco J.L. Activity landscape and molecular modeling to explore the SAR of dual epigenetic inhibitors: A focus on G9a and DNMT1. Molecules. 2018;23:3282. doi: 10.3390/molecules23123282. PubMed DOI PMC

Colquhoun D. The quantitative analysis of drug–receptor interactions: A short history. Trends Pharmacol. Sci. 2006;27:149–157. doi: 10.1016/j.tips.2006.01.008. PubMed DOI

Bak A., Kozik V., Malik I., Jampilek J., Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR QSAR Environ. Res. 2018;29:801–821. doi: 10.1080/1062936X.2018.1517278. PubMed DOI

Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I., Cronin M., Dearden J., Gramatica P., Martin Y.C., Todeschini R., et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014;57:4977–5010. PubMed PMC

Bak A., Polanski J. Modeling robust QSAR 3: SOM-4D-QSAR with iterative variable elimination IVE-PLS: Application to steroid, azo dye, and benzoic acid series. J. Chem. Inf. Model. 2007;47:1469–1480. doi: 10.1021/ci700025m. PubMed DOI

Polanski J., Bak A., Gieleciak R., Magdziarz T. Modeling robust QSAR. J. Chem. Inf. Modeling. 2003;46:2310–2318. doi: 10.1021/ci050314b. PubMed DOI

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...